Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(26): 266001, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37450815

RESUMO

The search for high-temperature superconducting superhydrides has recently moved into a new phase by going beyond extensively probed binary compounds and focusing on ternary ones with vastly expanded material types and configurations for property optimization. Theoretical and experimental works have revealed promising ternary compounds that superconduct at or above room temperature, but it remains a pressing challenge to synthesize stoichiometric ternary compounds with a well-resolved crystal structure that can host high-temperature superconductivity at submegabar pressures. Here, we report on the successful synthesis of ternary LaBeH_{8} obtained via compression in a diamond anvil cell under 110-130 GPa. X-ray diffraction unveils a rocksalt-like structure composing La and BeH_{8} units in the lattice. Transport measurements determined superconductivity with critical temperature T_{c} up to 110 K at 80 GPa, as evidenced by a sharp drop of resistivity to zero and a characteristic shift of T_{c} driven by a magnetic field. Our experiment establishes the first superconductive ternary compound with a resolved crystal structure. These findings raise the prospects of rational development of the class of high-T_{c} superhydrides among ternary compounds, opening greatly expanded and more diverse structural space for exploration and discovery of superhydrides with enhanced high-T_{c} superconductivity.


Assuntos
Diamante , Supercondutividade , Temperatura , Campos Magnéticos , Pressão
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa