Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 54(1): 6, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36717947

RESUMO

The type VI secretion system (T6SS) is a secretion apparatus widely found in pathogenic Gram-negative bacteria and is important for competition among various bacteria and host cell pathogenesis. Hcp is a core component of functional T6SS and transports toxic effectors into target cells by assembling to form tube-like structures. Studies have shown that Hcp simultaneously acts as an effector to influence cellular physiological activities; however, the mechanism of its activity in host cells remains unclear. To investigate the target of effector protein Hcp2a in a chicken fibroblast cell line, we first detected the subcellular localization of Hcp2a in DF-1 cells by indirect immunofluorescence assay. The results showed that Hcp2a protein was localized in the endoplasmic reticulum of DF-1 cells. We also used a streptavidin-biotin affinity pull-down assay combined with LC-MS/MS to screen DF-1 cell lysates for proteins that interact with Hcp2a and analyze the cellular functional pathways affected by them. The results showed that Hcp2a interacted with 52 DF-1 cellular proteins that are involved in multiple intracellular pathways. To further explore the mechanism of Hcp2a protein targeting the endoplasmic reticulum of DF-1 cells, we screened three endoplasmic reticulum-associated proteins (RSL1D1, RPS3A, and RPL23) from 52 prey proteins of Hcp2a for protein-protein molecular docking analysis. The docking analysis showed that the effector protein Hcp2a and the RPL23 protein had good complementarity. Overall, we propose that Hcp2a has strong binding activity to the RPL23 protein in DF-1 cells and this may help Hcp2a anchor to the endoplasmic reticulum in DF-1 cells.


Assuntos
Galinhas , Escherichia coli , Animais , Escherichia coli/metabolismo , Galinhas/metabolismo , Cromatografia Líquida/veterinária , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem/veterinária , Proteínas de Bactérias/metabolismo , Fibroblastos , Estresse do Retículo Endoplasmático
2.
Avian Pathol ; 51(2): 154-163, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35076320

RESUMO

T6SS (type VI secretion system) is a type of nano-syringe that exists in APEC (avian pathogenic Escherichia coli). Hcp (haemolysin-coregulated protein) of T6SS participates in the regulation of virulence during APEC infection. However, whether hcp plays a role in bacterial colonization by expression in host cells remains unclear. In this study, we analysed the biological characteristics of the mutant hcp2b strain. Our results showed that the hcp2b gene was involved in the regulation of bacterial motility, biofilm formation, anti-serum and anti-oxidative stress. Moreover, our data indicate that the colonization of the hcp2b mutation strain (Δhcp2b) in the lung, liver and kidney of chickens decreased significantly. Hence, overexpression of Hcp2b protein in DF-1 cells was used to analyse the effect of Hcp2b on colonization of APEC. Proteomics analysis showed that overexpression of Hcp2b induced differentially expressed proteins in DF-1 cells (230 were significantly upregulated and 96 were significantly downregulated) and differentially expressed proteins were enriched in keratin filament. In conclusion, our data indicated that hcp2b promoted the colonization of APEC by affecting the expression of keratin filament.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Doenças das Aves Domésticas , Animais , Galinhas/microbiologia , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Queratinas/genética , Queratinas/metabolismo , Doenças das Aves Domésticas/microbiologia , Fatores de Virulência/genética
3.
Theor Appl Genet ; 132(1): 27-40, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30242492

RESUMO

KEY MESSAGE: Quantitative Trait Loci (QTL) analysis of multiple populations in multiple environments revealed that the fsd6.2 locus, which includes the candidate gene Csgl3, controls high fruit spine density in natural cucumbers. GWAS identified a novel locus fsd6.1, which regulates ultra-high fruit spine density in combination with Csgl3, and evolved during cucumber domestication. Fruit spine density, a domestication trait, largely influences the commercial value of cucumbers. However, the molecular basis of fruit spine density in cucumber remains unclear. In this study, four populations were derived from five materials, which included three with low fruit spine density, one with high fruit spine density, and one with ultra-high fruit spine density. Fruit spine densities were measured in 15 environments over a span of 6 years. The distributions were bimodal suggesting that fruit spine density is controlled by a major-effect QTL. QTL analysis determined that the same major-effect QTL, fsd6.2, is present in four populations. Fine mapping indicated that Csgl3 is the candidate gene at the fsd6.2 locus. Phylogenetic and geographical distribution analyses revealed that Csgl3 originated from China, which has the highest genetic diversity for fruit spine density. One novel minor-effect QTL, fsd6.1, was detected in the HR and HP populations derived from the cross between 65G and 02245. In addition, GWAS identified a novel locus that colocates with fsd6.1. Inspection of a candidate region of about 18 kb in size using pairwise LD correlations, combined with genetic diversity and phylogenetic analysis of fsd6.1 in natural populations, indicated that Csa6G421750 is the candidate gene responsible for ultra-high fruit spine density in cucumber. This study provides new insights into the origin of fruit spine density and the evolution of high/ultra-high fruit spine density during cucumber domestication.


Assuntos
Cucumis sativus/genética , Frutas/fisiologia , Locos de Características Quantitativas , China , Mapeamento Cromossômico , Domesticação , Frutas/genética , Genes de Plantas , Estudos de Associação Genética , Ligação Genética , Variação Genética , Fenótipo , Filogenia
4.
Front Plant Sci ; 10: 1620, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921263

RESUMO

Cucumber (Cucumis sativus L.) is an economically important vegetable crop worldwide, but it is sensitive to low temperatures. Cucumber seedlings exposed to long-term low temperature stress (LT), i.e., below 20°C during the day, and 8°C at night, exhibit leaf yellowing, accelerated senescence, and reduced yield, therefore posing a threat to cucumber production. Studying the underlying mechanisms involved in LT tolerance in cucumber seedlings, and developing germplasm with improved LT-tolerance could provide fundamental solutions to the problem. In this study, an F2 population was generated from two parental lines, "CG104" (LT-tolerant inbred line) and "CG37" (LT-sensitive inbred line), to identify loci that are responsible for LT tolerance in cucumber seedlings. Replicated phenotypic analysis of the F2-derived F3 family using a low-temperature injury index (LTII) suggested that the LT tolerance of cucumber seedlings is controlled by multiple genes. A genetic map of 990.8 cM was constructed, with an average interval between markers of 5.2 cM. One quantitative trait loci (QTL) named qLTT5.1 on chromosome 5, and two QTLs named qLTT6.1 and qLTT6.2 on chromosome 6 were detected. Among them, qLTT6.2 accounted for 26.8 and 24.1% of the phenotypic variation in two different experiments. Single-nucleotide polymorphism (SNP) variations within the region of qLTT6.2 were analyzed using two contrasting in silico bulks generated from the cucumber core germplasm. Result showed that 214 SNPs were distributed within the 42-kb interval, containing three candidate genes. Real-time quantitative reverse transcription PCR and sequence analysis suggested that two genes Csa6G445210, an auxin response factor, and Csa6G445230, an ethylene-responsive transmembrane protein, might be candidate genes responsible for LT tolerance in cucumber seedlings. This study furthers the understanding of the molecular mechanism underlying LT tolerance in cucumber seedlings, and provides new markers for molecular breeding.

5.
PLoS One ; 13(7): e0200571, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30021020

RESUMO

The commercial yield of cucurbit crops infected with Cucumber mosaic virus (CMV) severely decreases. Chemical treatments against CMV are not effective; therefore, genetic resistance is considered the primary line of defense. Here, we studied resistance to CMV in cucumber inbred line '02245' using a recombinant inbred line (RIL) population generated from a cross between '65G' and '02245' as susceptible and resistant parents, respectively. Genetic analysis revealed that CMV resistance in cucumber is quantitatively inherited. Analysis of the RIL population revealed that a quantitative trait locus (QTL) was found on chromosome 6; named cmv6.1, this QTL was delimited by SSR9-56 and SSR11-177 and explained 31.7% of the phenotypic variation in 2016 and 28.2% in 2017. The marker SSR11-1, which is close to the locus, was tested on 78 different cucumber accessions and found to have an accuracy of 94% in resistant and moderately resistant lines but only 67% in susceptible lines. The mapped QTL was delimited within a region of 1,624.0 kb, and nine genes related to disease resistance were identified. Cloning and alignment of the genomic sequences of these nine genes between '65G' and '02245' revealed that Csa6M133680 had four single-base substitutions within the coding sequences (CDSs) and two single-base substitutions in its 3'-untranslated region, and the other eight genes showed 100% nucleotide sequence identity in their exons. Expression pattern analyses of Csa6M133680 in '65G' and '02245' revealed that the expression levels of Csa6M133680 significantly differed between '65G' and '02245' at 80 h after inoculation with CMV and that the expression in '02245' was 4.4 times greater than that in '65G'. The above results provide insights into the fine mapping and marker-assisted selection in cucumber breeding for CMV resistance.


Assuntos
Cucumis sativus , Cucumovirus , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas , Característica Quantitativa Herdável , Cucumis sativus/genética , Cucumis sativus/metabolismo , Cucumis sativus/virologia , Cucumovirus/genética , Cucumovirus/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/virologia
6.
PLoS One ; 11(12): e0167845, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27936210

RESUMO

Mechanized harvesting of cucumbers offers significant advantages compared to manual labor as both shortages and costs of labor increase. However the efficient use of machines depends on breeding plants with longer peduncles, but the genetic and molecular basis of fruit peduncle development in cucumber is not well understood. In this study, F2 populations were developed from a cross between two inbred lines, 1101 with a long peduncle and 1694 with a short peduncle. These were grown at two field sites, Hainan, with a tropical marine climate, in December 2014, and Beijing, with a warm temperate climate, in May 2015. Electron microscope examination of the pith cells in the peduncles of the two parental lines showed that line 1101 had significantly greater numbers of smaller cells compared to line 1694. The inheritance of cucumber fruit peduncle length (FPL) was investigated by the mixed major gene and polygene inheritance model. Genetic analysis indicated that FPL in cucumber is quantitatively inherited and controlled by one additive major gene and additive-dominant polygenes (D-2 model). A total of 1460 pairs of SSR (simple sequence repeat) primers were analyzed to identify quantitative trait loci (QTLs). Two similar genetic maps with 78 SSR markers which covered 720.6 cM in seven linkage groups were constructed based on two F2 populations. QTL analysis from the data collected at the two field sites showed that there are two minor QTLs on chromosome 1, named qfpl1.1 and qfpl1.2, and one major QTL on chromosome 6, named qfpl6.1. The marker UW021226, which was the closest one to qfpl6.1, had an accuracy rate of 79.0% when tested against plants selected from populations of the two parents. The results from this study provide insights into the inheritance and molecular mechanism of the variation of FPL in cucumber, and further research will be carried out to fine map qfpl6.1 to develop more accurate markers for MAS breeding.


Assuntos
Cucumis sativus/genética , Genes de Plantas , Locos de Características Quantitativas , Cucumis sativus/crescimento & desenvolvimento , Ligação Genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa