Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 12(3): e1005529, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27031246

RESUMO

Although nucleotide-binding domain, leucine-rich repeat (NLR) proteins are the major immune receptors in plants, the mechanism that controls their activation and immune signaling remains elusive. Here, we report that the avirulence effector AvrPiz-t from Magnaporthe oryzae targets the rice E3 ligase APIP10 for degradation, but that APIP10, in return, ubiquitinates AvrPiz-t and thereby causes its degradation. Silencing of APIP10 in the non-Piz-t background compromises the basal defense against M. oryzae. Conversely, silencing of APIP10 in the Piz-t background causes cell death, significant accumulation of Piz-t, and enhanced resistance to M. oryzae, suggesting that APIP10 is a negative regulator of Piz-t. We show that APIP10 promotes degradation of Piz-t via the 26S proteasome system. Furthermore, we demonstrate that AvrPiz-t stabilizes Piz-t during M. oryzae infection. Together, our results show that APIP10 is a novel E3 ligase that functionally connects the fungal effector AvrPiz-t to its NLR receptor Piz-t in rice.


Assuntos
Oryza/microbiologia , Doenças das Plantas/microbiologia , Ubiquitina-Proteína Ligases/metabolismo , Magnaporthe , Oryza/enzimologia , Ubiquitinação/imunologia
2.
Plant Cell ; 24(11): 4748-62, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23204406

RESUMO

Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Bases , Transporte Biológico , Resistência à Doença , Proteínas Fúngicas/genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Magnaporthe/patogenicidade , Oryza/genética , Oryza/metabolismo , Fenótipo , Doenças das Plantas/imunologia , Folhas de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Proteólise , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética
3.
Mol Plant Microbe Interact ; 26(2): 191-202, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23035914

RESUMO

Interactions between rice and Magnaporthe oryzae involve the recognition of cellular components and the exchange of complex molecular signals from both partners. How these interactions occur in rice cells is still elusive. We employed robust-long serial analysis of gene expression, massively parallel signature sequencing, and sequencing by synthesis to examine transcriptome profiles of infected rice leaves. A total of 6,413 in planta-expressed fungal genes, including 851 genes encoding predicted effector proteins, were identified. We used a protoplast transient expression system to assess 42 of the predicted effector proteins for the ability to induce plant cell death. Ectopic expression assays identified five novel effectors that induced host cell death only when they contained the signal peptide for secretion to the extracellular space. Four of them induced cell death in Nicotiana benthamiana. Although the five effectors are highly diverse in their sequences, the physiological basis of cell death induced by each was similar. This study demonstrates that our integrative genomic approach is effective for the identification of in planta-expressed cell death-inducing effectors from M. oryzae that may play an important role facilitating colonization and fungal growth during infection.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/fisiologia , Oryza/microbiologia , Doenças das Plantas/microbiologia , Morte Celular , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Magnaporthe/genética , Magnaporthe/crescimento & desenvolvimento , Anotação de Sequência Molecular , Oryza/genética , Oryza/fisiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Transporte Proteico , Protoplastos , RNA Fúngico/genética , Nicotiana/genética , Nicotiana/microbiologia , Nicotiana/fisiologia
4.
J Genet ; 992020.
Artigo em Inglês | MEDLINE | ID: mdl-32529988

RESUMO

Rice blast disease, caused by Magnaporthe oryzae, is one of the most importance diseases of rice production worldwide. The keyrole of defense mechanism to combat this fungus in rice follows the gene-for-gene concept, which a plant resistant (R) gene product recognizes a fungal avirulent (AVR) effector and triggers the hypersensitive response. However, the AVR genes have been shown to be rapidly evolving resulting in high level of genetic diversity. The aims of this study were to examine the nucleotide sequence variation of AVR-Pita1 gene in Thai rice blast isolates and to identify the severity of blast disease using isogenic line of Pita gene. Seventy-six rice blast isolates collected from different parts of Thailand were used. Gene specific primers for AVR-Pita1 gene coding sequence were designed and used for identifying the genetic diversity of AVR-Pita1 gene by PCR amplification and sequencing. The obtained sequences were analysed for genetic variation and genetic relationship. Our results revealed the association between the sequence variations of AVR-Pita1 and selective forces from Pita gene. This phenomenon demonstrated the coevolution between rice blast resistant gene in rice and avirulent gene in blast fungus. The information about variation and evolutionary mechanisms of AVR gene obtained from this study can be used in rice blast resistant breeding programme.


Assuntos
Ascomicetos/genética , Ascomicetos/isolamento & purificação , Sequência de Bases/genética , Variação Genética , Oryza , Filogenia , Reação em Cadeia da Polimerase , Fatores de Virulência
5.
Mol Plant Pathol ; 20(4): 599-608, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548752

RESUMO

Magnaporthe oryzae is an important fungal pathogen of both rice and wheat. However, how M. oryzae effectors modulate plant immunity is not fully understood. Previous studies have shown that the M. oryzae effector AvrPiz-t targets the host ubiquitin-proteasome system to manipulate plant defence. In return, two rice ubiquitin E3 ligases, APIP6 and APIP10, ubiquitinate AvrPiz-t for degradation. To determine how lysine residues contribute to the stability and function of AvrPiz-t, we generated double (K1,2R-AvrPiz-t), triple (K1,2,3R-AvrPiz-t) and lysine-free (LF-AvrPiz-t) mutants by mutating lysines into arginines in AvrPiz-t. LF-AvrPiz-t showed the highest protein accumulation when transiently expressed in rice protoplasts. When co-expressed with APIP10 in Nicotiana benthamiana, LF-AvrPiz-t was more stable than AvrPiz-t and was less able to degrade APIP10. The avirulence of LF-AvrPiz-t on Piz-t:HA plants was less than that of AvrPiz-t, which led to resistance reduction and lower accumulation of the Piz-t:HA protein after inoculation with the LF-AvrPiz-t-carrying isolate. Chitin- and flg22-induced production of reactive oxygen species (ROS) was higher in LF-AvrPiz-t than in AvrPiz-t transgenic plants. In addition, LF-AvrPiz-t transgenic plants were less susceptible than AvrPiz-t transgenic plants to a virulent isolate. Furthermore, both AvrPiz-t and LF-AvrPiz-t interacted with OsRac1, but the suppression of OsRac1-mediated ROS generation by LF-AvrPiz-t was significantly lower than that by AvrPiz-t. Together, these results suggest that the lysine residues of AvrPiz-t are required for its avirulence and virulence functions in rice.


Assuntos
Proteínas Fúngicas/metabolismo , Lisina/química , Magnaporthe/imunologia , Magnaporthe/patogenicidade , Oryza/metabolismo , Oryza/microbiologia , Resistência à Doença/imunologia , Proteínas Fúngicas/química , Proteínas Fúngicas/imunologia , Magnaporthe/metabolismo , Oryza/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo
6.
Plant Physiol ; 150(3): 1111-21, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19403729

RESUMO

With the recent availability of complete genomic sequences of many organisms, high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand. Although site-specific recombination-based cloning systems, such as Gateway cloning technology, are extremely useful for efficient transfer of DNA fragments into multiple destination vectors, the two-step cloning process is time consuming and expensive. Here, we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation. The improved T-vector system takes advantage of the restriction enzyme XcmI to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation. We demonstrate the feasibility and flexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, protein subcellular localization detection, and promoter fragment activity analysis in plants. Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general, cost-efficient, and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.


Assuntos
Arabidopsis/genética , Clonagem Molecular/métodos , Vetores Genéticos , Oryza/genética , Proteínas de Plantas/genética , Agrobacterium tumefaciens , Fragmentação do DNA , DNA de Plantas/química , Genômica/métodos , MicroRNAs , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa