Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 123(4): 509-524, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38258292

RESUMO

Microtubules (MTs) are observed to move and buckle driven by ATP-dependent molecular motors in both mitotic and interphasic eukaryotic cells as well as in specialized structures such as flagella and cilia with a stereotypical geometry. In previous work, clamped MTs driven by a few kinesin motors were seen to buckle and occasionally flap in what was referred to as flagella-like motion. Theoretical models of active-filament dynamics and a following force have predicted that, with sufficient force and binding-unbinding, such clamped filaments should spontaneously undergo periodic buckling oscillations. However, a systematic experimental test of the theory and reconciliation to a model was lacking. Here, we have engineered a minimal system of MTs clamped at their plus ends and transported by a sheet of dynein motors that demonstrate the emergence of spontaneous traveling-wave oscillations along single filaments. The frequencies of tip oscillations are in the millihertz range and are statistically indistinguishable in the onset and recovery phases. We develop a 2D computational model of clamped MTs binding and unbinding stochastically to motors in a "gliding-assay" geometry. The simulated MTs oscillate with a frequency comparable to experiment. The model predicts the effect of MT length and motor density on qualitative transitions between distinct phases of flapping, regular oscillations, and looping. We develop an effective "order parameter" based on the relative deflection along the filament and orthogonal to it. The transitions predicted in simulations are validated by experimental data. These results demonstrate a role for geometry, MT buckling, and collective molecular motor activity in the emergence of oscillatory dynamics.


Assuntos
Dineínas , Microtúbulos , Dineínas/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Flagelos/metabolismo
2.
J Pers Med ; 12(3)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35330393

RESUMO

Lung cancer is one of the most invasive cancers affecting over a million of the population. Non-small cell lung cancer (NSCLC) constitutes up to 85% of all lung cancer cases, and therefore, it is essential to identify predictive biomarkers of NSCLC for therapeutic purposes. Here we use a network theoretical approach to investigate the complex behavior of the NSCLC gene-regulatory interactions. We have used eight NSCLC microarray datasets GSE19188, GSE118370, GSE10072, GSE101929, GSE7670, GSE33532, GSE31547, and GSE31210 and meta-analyzed them to find differentially expressed genes (DEGs) and further constructed a protein-protein interaction (PPI) network. We analyzed its topological properties and identified significant modules of the PPI network using cytoscape network analyzer and MCODE plug-in. From the PPI network, top ten genes of each of the six topological properties like closeness centrality, maximal clique centrality (MCC), Maximum Neighborhood Component (MNC), radiality, EPC (Edge Percolated Component) and bottleneck were considered for key regulator identification. We further compared them with top ten hub genes (those with the highest degrees) to find key regulator (KR) genes. We found that two genes, CDK1 and HSP90AA1, were common in the analysis suggesting a significant regulatory role of CDK1 and HSP90AA1 in non-small cell lung cancer. Our study using a network theoretical approach, as a summary, suggests CDK1 and HSP90AA1 as key regulator genes in complex NSCLC network.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa