RESUMO
Phospholipids containing a single polyunsaturated fatty acyl tail (PL-PUFA1s) are considered the driving force behind ferroptosis, whereas phospholipids with diacyl-PUFA tails (PL-PUFA2s) have been rarely characterized. Dietary lipids modulate ferroptosis, but the mechanisms governing lipid metabolism and ferroptosis sensitivity are not well understood. Our research revealed a significant accumulation of diacyl-PUFA phosphatidylcholines (PC-PUFA2s) following fatty acid or phospholipid treatments, correlating with cancer cell sensitivity to ferroptosis. Depletion of PC-PUFA2s occurred in aging and Huntington's disease brain tissue, linking it to ferroptosis. Notably, PC-PUFA2s interacted with the mitochondrial electron transport chain, generating reactive oxygen species (ROS) for initiating lipid peroxidation. Mitochondria-targeted antioxidants protected cells from PC-PUFA2-induced mitochondrial ROS (mtROS), lipid peroxidation, and cell death. These findings reveal a critical role for PC-PUFA2s in controlling mitochondria homeostasis and ferroptosis in various contexts and explain the ferroptosis-modulating mechanisms of free fatty acids. PC-PUFA2s may serve as diagnostic and therapeutic targets for modulating ferroptosis.
Assuntos
Gorduras na Dieta , Ferroptose , Fosfolipídeos , Ácidos Graxos , Fosfatidilcolinas , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio , Gorduras na Dieta/metabolismoRESUMO
Diffuse large B cell lymphoma (DLBCL) is the most common B cell non-Hodgkin lymphoma and remains incurable in around 40% of patients. Efforts to sequence the coding genome identified several genes and pathways that are altered in this disease, including potential therapeutic targets1-5. However, the non-coding genome of DLBCL remains largely unexplored. Here we show that active super-enhancers are highly and specifically hypermutated in 92% of samples from individuals with DLBCL, display signatures of activation-induced cytidine deaminase activity, and are linked to genes that encode B cell developmental regulators and oncogenes. As evidence of oncogenic relevance, we show that the hypermutated super-enhancers linked to the BCL6, BCL2 and CXCR4 proto-oncogenes prevent the binding and transcriptional downregulation of the corresponding target gene by transcriptional repressors, including BLIMP1 (targeting BCL6) and the steroid receptor NR3C1 (targeting BCL2 and CXCR4). Genetic correction of selected mutations restored repressor DNA binding, downregulated target gene expression and led to the counter-selection of cells containing corrected alleles, indicating an oncogenic dependency on the super-enhancer mutations. This pervasive super-enhancer mutational mechanism reveals a major set of genetic lesions deregulating gene expression, which expands the involvement of known oncogenes in DLBCL pathogenesis and identifies new deregulated gene targets of therapeutic relevance.
Assuntos
Elementos Facilitadores Genéticos , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B , Mutação , Oncogenes , Regulação para Baixo , Elementos Facilitadores Genéticos/genética , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Oncogenes/genética , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-6/genética , Receptores CXCR4/genética , Receptores de Glucocorticoides/metabolismo , Proteínas Repressoras/metabolismoRESUMO
Extracellular electron transfer by Geobacter species through surface appendages known as microbial nanowires1 is important in a range of globally important environmental phenomena2, as well as for applications in bio-remediation, bioenergy, biofuels and bioelectronics. Since 2005, these nanowires have been thought to be type 4 pili composed solely of the PilA-N protein1. However, previous structural analyses have demonstrated that, during extracellular electron transfer, cells do not produce pili but rather nanowires made up of the cytochromes OmcS2,3 and OmcZ4. Here we show that Geobacter sulfurreducens binds PilA-N to PilA-C to assemble heterodimeric pili, which remain periplasmic under nanowire-producing conditions that require extracellular electron transfer5. Cryo-electron microscopy revealed that C-terminal residues of PilA-N stabilize its copolymerization with PilA-C (to form PilA-N-C) through electrostatic and hydrophobic interactions that position PilA-C along the outer surface of the filament. PilA-N-C filaments lack π-stacking of aromatic side chains and show a conductivity that is 20,000-fold lower than that of OmcZ nanowires. In contrast with surface-displayed type 4 pili, PilA-N-C filaments show structure, function and localization akin to those of type 2 secretion pseudopili6. The secretion of OmcS and OmcZ nanowires is lost when pilA-N is deleted and restored when PilA-N-C filaments are reconstituted. The substitution of pilA-N with the type 4 pili of other microorganisms also causes a loss of secretion of OmcZ nanowires. As all major phyla of prokaryotes use systems similar to type 4 pili, this nanowire translocation machinery may have a widespread effect in identifying the evolution and prevalence of diverse electron-transferring microorganisms and in determining nanowire assembly architecture for designing synthetic protein nanowires.
Assuntos
Fímbrias Bacterianas/química , Fímbrias Bacterianas/metabolismo , Geobacter , Nanofios , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biopolímeros , Condutividade Elétrica , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Geobacter/citologia , Geobacter/metabolismo , Multimerização ProteicaRESUMO
NK cells are innate immune effectors that kill virally infected or malignant cells. NK cell deficiency (NKD) occurs when NK cell development or function is impaired and variants in MCM4, GINS1, MCM10, and GINS4 result in NKD. Although NK cells are strongly impacted by mutational deficiencies in helicase proteins, the mechanisms underlying this specific susceptibility are poorly understood. In this study, we induced replication stress in activated NK cells or T cells by chemical and genetic methods. We found that the CD56bright subset of NK cells accumulates more DNA damage and replication stress during activation than do CD56dim NK cells or T cells. Aphidicolin treatment increases apoptosis of CD56bright NK cells through increased pan-caspase expression and decreases perforin expression in surviving cells. These findings show that sensitivity to replication stress affects NK cell survival and function and contributes to NKD.
Assuntos
Apoptose , Células Matadoras Naturais , Ativação Linfocitária , Humanos , Células Matadoras Naturais/imunologia , Apoptose/imunologia , Ativação Linfocitária/imunologia , Dano ao DNA , Replicação do DNA , Antígeno CD56/metabolismo , Estresse Fisiológico/imunologia , Linfócitos T/imunologia , Células CultivadasRESUMO
Biomarkers play a crucial role in advancing precision medicine by enabling more targeted and individualized approaches to diagnosis and treatment. Various biofluids, including serum, plasma, cerebrospinal fluid (CSF), saliva, tears, pancreatic cyst fluids, and urine, have been identified as rich sources of potential for the early detection of disease biomarkers in conditions such as cancer, cardiovascular diseases, and neurodegenerative disorders. The analysis of plasma and serum in proteomics research encounters challenges due to their high complexity and the wide dynamic range of protein abundance. These factors impede the sensitivity, coverage, and precision of protein detection when employing mass spectrometry, a widely utilized technology in discovery proteomics. Conventional approaches such as Neat Plasma workflow are inefficient in accurately quantifying low-abundant proteins, including those associated with tissue leakage, immune response molecules, interleukins, cytokines, and interferons. Moreover, the manual nature of the workflow poses a significant hurdle in conducting large cohort studies. In this study, our focus is on comparing workflows for plasma proteomic profiling to establish a methodology that is not only sensitive and reproducible but also applicable for large cohort studies in biomarker discovery. Our investigation revealed that the Proteograph XT workflow outperforms other workflows in terms of plasma proteome depth, quantitative accuracy, and reproducibility while offering complete automation of sample preparation. Notably, Proteograph XT demonstrates versatility by applying it to various types of biofluids. Additionally, the proteins quantified widely cover secretory proteins in peripheral blood, and the pathway analysis enriched with relevant components such as interleukins, tissue necrosis factors, chemokines, and B and T cell receptors provides valuable insights. These proteins, often challenging to quantify in complex biological samples, hold potential as early detection markers for various diseases, thereby contributing to the improvement of patient care quality.
RESUMO
Biomarkers play a crucial role in advancing precision medicine by enabling more targeted and individualized approaches to diagnosis and treatment. Various biofluids, including serum, plasma, cerebrospinal fluid (CSF), saliva, tears, pancreatic cyst fluids, and urine, have been identified as rich sources of potential for the early detection of disease biomarkers in conditions such as cancer, cardiovascular diseases, and neurodegenerative disorders. The analysis of plasma and serum in proteomics research encounters challenges due to their high complexity and the wide dynamic range of protein abundance. These factors impede the sensitivity, coverage, and precision of protein detection when employing mass spectrometry, a widely utilized technology in discovery proteomics. Conventional approaches such as neat plasma workflow are inefficient in accurately quantifying low-abundant proteins, including those associated with tissue leakage, immune response molecules, interleukins, cytokines, and interferons. Moreover, the manual nature of the workflow poses a significant hurdle in conducting large cohort studies. In this study, our focus is on comparing workflows for plasma proteomic profiling to establish a methodology that is not only sensitive and reproducible but also applicable for large cohort studies in biomarker discovery. Our investigation revealed that the SeerProteographXT workflow outperforms other workflows in terms of plasma proteome depth, quantitative accuracy, and reproducibility while offering complete automation of sample preparation. Notably, SeerProteographXT demonstrates versatility by applying it to various types of biofluids. Additionally, the proteins quantified widely cover secretory proteins in peripheral blood, and the pathway analysis enriched with relevant components such as interleukins, tissue necrosis factors, chemokines, and B and T cell receptors provides valuable insights. These proteins, often challenging to quantify in complex biological samples, hold potential as early detection markers for various diseases, thereby contributing to the improvement of patient care quality.
RESUMO
Iron overload, characterized by accumulation of iron in tissues, induces a multiorgan toxicity whose mechanisms are not fully understood. Using cultured cell lines, Caenorhabditis elegans, and mice, we found that ferroptosis occurs in the context of iron-overload-mediated damage. Exogenous oleic acid protected against iron-overload-toxicity in cell culture and Caenorhabditis elegans by suppressing ferroptosis. In mice, oleic acid protected against FAC-induced liver lipid peroxidation and damage. Oleic acid changed the cellular lipid composition, characterized by decreased levels of polyunsaturated fatty acyl phospholipids and decreased levels of ether-linked phospholipids. The protective effect of oleic acid in cells was attenuated by GW6471 (PPAR-α antagonist), as well as in Caenorhabditis elegans lacking the nuclear hormone receptor NHR-49 (a PPAR-α functional homologue). These results highlight ferroptosis as a driver of iron-overload-mediated damage, which is inhibited by oleic acid. This monounsaturated fatty acid represents a potential therapeutic approach to mitigating organ damage in iron overload individuals.
Assuntos
Ferroptose , Sobrecarga de Ferro , Animais , Camundongos , Caenorhabditis elegans , Ácido Oleico/farmacologia , Receptores Ativados por Proliferador de Peroxissomo , Sobrecarga de Ferro/tratamento farmacológico , Ferro , Éteres FosfolipídicosRESUMO
The myocyte enhancer factor 2B (MEF2B) transcription factor is frequently mutated in germinal center (GC)-derived B-cell lymphomas. Its ammino (N)-terminal mutations drive lymphomagenesis by escaping interaction with transcriptional repressors, while the function of carboxy (C)-terminal mutations remains to be elucidated. Here, we show that MEF2B C-tail is physiologically phosphorylated at specific residues and phosphorylation at serine (S)324 is impaired by lymphoma-associated mutations. Lack of phosphorylation at S324 enhances the interaction of MEF2B with the SWI/SNF chromatin remodeling complex, leading to higher transcriptional activity. In addition, these mutants show an increased protein stability due to impaired interaction with the CUL3/KLHL12 ubiquitin complex. Mice expressing a phosphorylation-deficient lymphoma-associated MEF2B mutant display GC enlargement and develop GC-derived lymphomas, when crossed with Bcl2 transgenic mice. These results unveil converging mechanisms of action for a diverse spectrum of MEF2B mutations, all leading to its dysregulation and GC B-cell lymphomagenesis.
Assuntos
Linfoma de Células B , Fatores de Transcrição MEF2 , Mutação , Animais , Humanos , Camundongos , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Centro Germinativo/metabolismo , Células HEK293 , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Fatores de Transcrição MEF2/metabolismo , Fatores de Transcrição MEF2/genética , Camundongos Transgênicos , Fosforilação , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genéticaRESUMO
Disease-associated microglia (DAM), initially described in mouse models of neurodegenerative diseases, have been classified into two related states; starting from a TREM2-independent DAM1 state to a TREM2 dependent state termed DAM2, with each state being characterized by the expression of specific marker genes1. Recently, single-cell (sc)RNA-Seq studies have reported the existence of DAMs in humans2-6; however, whether DAMs play beneficial or detrimental roles in the context of neurodegeneration is still under debate7,8. Here, we present a pharmacological approach to mimic human DAM in vitro by exposing different human microglia models to selected histone deacetylase (HDAC) inhibitors. We also provide an initial functional characterization of our model system, showing a specific increase of amyloid beta phagocytosis along with a reduction of MCP-1 secretion. Additionally, we report an increase in MITF expression, a transcription factor previously described to drive expression towards the DAM phenotype. We further identify CADM1, LIPA and SCIN as DAM-marker genes shared across various proposed DAM signatures and in our model systems. Overall, our strategy for targeted microglial polarization bears great potential to further explore human DAM function and biology.
RESUMO
Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.
Assuntos
Adipogenia , Interleucina-8 , Fatores de Transcrição Kruppel-Like , Estabilidade de RNA , RNA Longo não Codificante , Animais , Humanos , Camundongos , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/metabolismo , Inflamação/patologia , Inflamação/genética , Inflamação/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Obesidade/metabolismo , Obesidade/genética , Obesidade/patologia , Estabilidade de RNA/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked disorder characterized by progressive muscle weakness due to the absence of functional dystrophin. DMD patients also develop dilated cardiomyopathy (DCM). We have previously shown that DMD (mdx) mice and a canine DMD model (GRMD) exhibit abnormal intracellular calcium (Ca2+) cycling related to early-stage pathological remodelling of the ryanodine receptor intracellular calcium release channel (RyR2) on the sarcoplasmic reticulum (SR) contributing to age-dependent DCM. METHODS: Here, we used hiPSC-CMs from DMD patients selected by Speckle-tracking echocardiography and canine DMD cardiac biopsies to assess key early-stage Duchenne DCM features. RESULTS: Dystrophin deficiency was associated with RyR2 remodelling and SR Ca2+ leak (RyR2 Po of 0.03 ± 0.01 for HC vs. 0.16 ± 0.01 for DMD, P < 0.01), which led to early-stage defects including senescence. We observed higher levels of senescence markers including p15 (2.03 ± 0.75 for HC vs. 13.67 ± 5.49 for DMD, P < 0.05) and p16 (1.86 ± 0.83 for HC vs. 10.71 ± 3.00 for DMD, P < 0.01) in DMD hiPSC-CMs and in the canine DMD model. The fibrosis was increased in DMD hiPSC-CMs. We observed cardiac hypocontractility in DMD hiPSC-CMs. Stabilizing RyR2 pharmacologically by S107 prevented most of these pathological features, including the rescue of the contraction amplitude (1.65 ± 0.06 µm for DMD vs. 2.26 ± 0.08 µm for DMD + S107, P < 0.01). These data were confirmed by proteomic analyses, in particular ECM remodelling and fibrosis. CONCLUSIONS: We identified key cellular damages that are established earlier than cardiac clinical pathology in DMD patients, with major perturbation of the cardiac ECC. Our results demonstrated that cardiac fibrosis and premature senescence are induced by RyR2 mediated SR Ca2+ leak in DMD cardiomyocytes. We revealed that RyR2 is an early biomarker of DMD-associated cardiac damages in DMD patients. The progressive and later DCM onset could be linked with the RyR2-mediated increased fibrosis and premature senescence, eventually causing cell death and further cardiac fibrosis in a vicious cycle leading to further hypocontractility as a major feature of DCM. The present study provides a novel understanding of the pathophysiological mechanisms of the DMD-induced DCM. By targeting RyR2 channels, it provides a potential pharmacological treatment.
Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Humanos , Camundongos , Animais , Cães , Cardiomiopatia Dilatada/etiologia , Distrofina/genética , Distrofina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Camundongos Endogâmicos mdx , Cálcio/metabolismo , Proteômica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , FibroseRESUMO
Human microglia play a pivotal role in neurological diseases, but we still have an incomplete understanding of microglial heterogeneity, which limits the development of targeted therapies directly modulating their state or function. Here, we use single-cell RNA sequencing to profile 215,680 live human microglia from 74 donors across diverse neurological diseases and CNS regions. We observe a central divide between oxidative and heterocyclic metabolism and identify microglial subsets associated with antigen presentation, motility and proliferation. Specific subsets are enriched in susceptibility genes for neurodegenerative diseases or the disease-associated microglial signature. We validate subtypes in situ with an RNAscope-immunofluorescence pipeline and high-dimensional MERFISH. We also leverage our dataset as a classification resource, finding that induced pluripotent stem cell model systems capture substantial in vivo heterogeneity. Finally, we identify and validate compounds that recapitulate certain subtypes in vitro, including camptothecin, which downregulates the signature of disease-enriched subtypes and upregulates a signature previously associated with Alzheimer's disease.
RESUMO
Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.
Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Fator de Transcrição Ikaros/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacosRESUMO
Formalin-fixed paraffin-embedded (FFPE) samples are valuable archived bio-specimens of individuals and are commonly used in biomedical research. Here, we present a protocol for deep proteomic profiling of FFPE specimens using a spectral library-free approach. We describe steps for FFPE tissue collection, tissue lysis, homogenization, protein lysate cleanup, on-beads digestion, and de-salting. We then detail data acquisition and statistical analysis. This protocol is highly sensitive, reproducible, and applicable for high-throughput proteomic profiling and can be used on various types of specimens.
Assuntos
Formaldeído , Proteômica , Humanos , Fixação de Tecidos/métodos , Inclusão em Parafina/métodos , Proteômica/métodos , Proteínas/análiseRESUMO
In tissue development and homeostasis, transforming growth factor (TGF)-ß signaling is finely coordinated by latent forms and matrix sequestration. Optogenetics can offer precise and dynamic control of cell signaling. We report the development of an optogenetic human induced pluripotent stem cell system for TGF-ß signaling and demonstrate its utility in directing differentiation into the smooth muscle, tenogenic, and chondrogenic lineages. Light-activated TGF-ß signaling resulted in expression of differentiation markers at levels close to those in soluble factor-treated cultures, with minimal phototoxicity. In a cartilage-bone model, light-patterned TGF-ß gradients allowed the establishment of hyaline-like layer of cartilage tissue at the articular surface while attenuating with depth to enable hypertrophic induction at the osteochondral interface. By selectively activating TGF-ß signaling in co-cultures of light-responsive and non-responsive cells, undifferentiated and differentiated cells were simultaneously maintained in a single culture with shared medium. This platform can enable patient-specific and spatiotemporally precise studies of cellular decision making.
Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Fator de Crescimento Transformador beta/metabolismo , Optogenética , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Transdução de Sinais , Condrogênese , Células Cultivadas , CondrócitosRESUMO
Cognitive dysfunction (CD) in heart failure (HF) adversely affects treatment compliance and quality of life. Although ryanodine receptor type 2 (RyR2) has been linked to cardiac muscle dysfunction, its role in CD in HF remains unclear. Here, we show in hippocampal neurons from individuals and mice with HF that the RyR2/intracellular Ca2+ release channels were subjected to post-translational modification (PTM) and were leaky. RyR2 PTM included protein kinase A phosphorylation, oxidation, nitrosylation and depletion of the stabilizing subunit calstabin2. RyR2 PTM was caused by hyper-adrenergic signaling and activation of the transforming growth factor-beta pathway. HF mice treated with a RyR2 stabilizer drug (S107), beta blocker (propranolol) or transforming growth factor-beta inhibitor (SD-208), or genetically engineered mice resistant to RyR2 Ca2+ leak (RyR2-p.Ser2808Ala), were protected against HF-induced CD. Taken together, we propose that HF is a systemic illness driven by intracellular Ca2+ leak that includes cardiogenic dementia.
Assuntos
Disfunção Cognitiva , Insuficiência Cardíaca , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Cálcio/metabolismo , Disfunção Cognitiva/etiologia , Insuficiência Cardíaca/metabolismo , Fosforilação , Qualidade de Vida , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Fatores de Crescimento Transformadores/metabolismoRESUMO
BACKGROUND: The most common form of neuronal ceroid lipofuscinosis (NCL) is juvenile CLN3 disease (JNCL), a currently incurable neurodegenerative disorder caused by mutations in the CLN3 gene. Based on our previous work and on the premise that CLN3 affects the trafficking of the cation-independent mannose-6 phosphate receptor and its ligand NPC2, we hypothesised that dysfunction of CLN3 leads to the aberrant accumulation of cholesterol in the late endosomes/lysosomes (LE/Lys) of JNCL patients' brains. METHODS: An immunopurification strategy was used to isolate intact LE/Lys from frozen autopsy brain samples. LE/Lys isolated from samples of JNCL patients were compared with age-matched unaffected controls and Niemann-Pick Type C (NPC) disease patients. Indeed, mutations in NPC1 or NPC2 result in the accumulation of cholesterol in LE/Lys of NPC disease samples, thus providing a positive control. The lipid and protein content of LE/Lys was then analysed using lipidomics and proteomics, respectively. FINDINGS: Lipid and protein profiles of LE/Lys isolated from JNCL patients were profoundly altered compared to controls. Importantly, cholesterol accumulated in LE/Lys of JNCL samples to a comparable extent than in NPC samples. Lipid profiles of LE/Lys were similar in JNCL and NPC patients, except for levels of bis(monoacylglycero)phosphate (BMP). Protein profiles detected in LE/Lys of JNCL and NPC patients appeared identical, except for levels of NPC1. INTERPRETATION: Our results support that JNCL is a lysosomal cholesterol storage disorder. Our findings also support that JNCL and NPC disease share pathogenic pathways leading to aberrant lysosomal accumulation of lipids and proteins, and thus suggest that the treatments available for NPC disease may be beneficial to JNCL patients. This work opens new avenues for further mechanistic studies in model systems of JNCL and possible therapeutic interventions for this disorder. FUNDING: San Francisco Foundation.
Assuntos
Doenças por Armazenamento dos Lisossomos , Doença de Niemann-Pick Tipo C , Humanos , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Colesterol/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Proteínas/metabolismo , Lisossomos/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Chaperonas Moleculares/genéticaRESUMO
In critical care patients, the ""temporary inactivity of the diaphragm caused by mechanical ventilation (MV) triggers a series of events leading to diaphragmatic dysfunction and atrophy, commonly known as ventilator-induced diaphragm dysfunction (VIDD). While mitochondrial dysfunction related to oxidative stress is recognized as a crucial factor in VIDD, the exact molecular mechanism remains poorly understood. In this study, we observe that 6â h of MV triggers aberrant mitochondrial dynamics, resulting in a reduction in mitochondrial size and interaction, associated with increased expression of dynamin-related protein 1 (DRP1). This effect can be prevented by P110, a molecule that inhibits the recruitment of DRP1 to the mitochondrial membrane. Furthermore, isolated mitochondria from the diaphragms of ventilated patients exhibited increased production of reactive oxygen species (ROS). These mitochondrial changes were associated with the rapid oxidation of type 1 ryanodine receptor (RyR1) and a decrease in the stabilizing subunit calstabin 1. Subsequently, we observed that the sarcoplasmic reticulum (SR) in the ventilated diaphragms showed increased calcium leakage and reduced contractile function. Importantly, the mitochondrial fission inhibitor P110 effectively prevented all of these alterations. Taken together, the results of our study illustrate that MV leads, in the diaphragm, to both mitochondrial fragmentation and dysfunction, linked to the up-/down-regulation of 320 proteins, as assessed through global comprehensive quantitative proteomics analysis, primarily associated with mitochondrial function. These outcomes underscore the significance of developing compounds aimed at modulating the balance between mitochondrial fission and fusion as potential interventions to mitigate VIDD in human patients.
RESUMO
LZTR1 is the substrate-specific adaptor of a CUL3-dependent ubiquitin ligase frequently mutated in sporadic and syndromic cancer. We combined biochemical and genetic studies to identify LZTR1 substrates and interrogated their tumor-driving function in the context of LZTR1 loss-of-function mutations. Unbiased screens converged on EGFR and AXL receptor tyrosine kinases as LZTR1 interactors targeted for ubiquitin-dependent degradation in the lysosome. Pathogenic cancer-associated mutations of LZTR1 failed to promote EGFR and AXL degradation, resulting in dysregulated growth factor signaling. Conditional inactivation of Lztr1 and Cdkn2a in the mouse nervous system caused tumors in the peripheral nervous system including schwannoma-like tumors, thus recapitulating aspects of schwannomatosis, the prototype tumor predisposition syndrome sustained by LZTR1 germline mutations. Lztr1- and Cdkn2a-deleted tumors aberrantly accumulated EGFR and AXL and exhibited specific vulnerability to EGFR and AXL coinhibition. These findings explain tumorigenesis by LZTR1 inactivation and offer therapeutic opportunities to patients with LZTR1-mutant cancer. SIGNIFICANCE: EGFR and AXL are substrates of LZTR1-CUL3 ubiquitin ligase. The frequent somatic and germline mutations of LZTR1 in human cancer cause EGFR and AXL accumulation and deregulated signaling. LZTR1-mutant tumors show vulnerability to concurrent inhibition of EGFR and AXL, thus providing precision targeting to patients affected by LZTR1-mutant cancer. This article is highlighted in the In This Issue feature, p. 517.