Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 316(4): C559-C566, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30789754

RESUMO

Intestinal Niemann-Pick C1 Like 1 (NPC1L1) protein plays a key role in cholesterol absorption. A decrease in NPC1L1 expression has been implicated in lowering plasma cholesterol and mitigating the risk for coronary heart disease. Little is known about the mechanisms responsible for NPC1L1 protein degradation that upon activation may lead to a reduction in NPC1L1 protein levels in intestinal epithelial cells (IECs). In current studies, the human intestinal Caco-2 and HuTu-80 cell lines expressing NPC1L1-hemagglutinin fusion protein were used to investigate the mechanisms of NPC1L1 protein degradation. Incubation with the proteasome inhibitors MG-132 and lactacystin (10 µM, 24 h) significantly increased NPC1L1 protein levels in IECs. Also, the inhibition of the lysosomal pathway with bafilomycin A1 (80 nM, 24 h) resulted in a significant increase in NPC1L1 protein levels. Immunoprecipitation studies showed that NPC1L1 protein is both a poly- and monoubiquinated polypeptide and that the inhibition of the proteasomal pathway remarkably increased the level of the polyubiquinated NPC1L1. The surface expression of NPC1L1 was increased by the inhibition of both proteasomal and lysosomal pathways. Furthermore, the pharmacological inhibition of mitogen-activated protein kinase pathway (PD-98059, 15 µM, 24 h) and siRNA silencing of ERK1/2 resulted in a significant decrease in NPC1L1 protein levels in IECs. In conclusion, our results showed that basal level of intestinal cholesterol transporter NPC1L1 protein is modulated by both ubiquitin proteasome- and lysosome-dependent degradation as well as by ERK1/2-dependent pathway. The modulation of these pathways may provide novel clues for therapeutic intervention to inhibit cholesterol absorption and lower plasma cholesterol.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteólise , Células CACO-2 , Células Epiteliais/patologia , Humanos , Mucosa Intestinal/patologia
2.
Am J Physiol Gastrointest Liver Physiol ; 312(5): G443-G449, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28209599

RESUMO

Enteropathogenic Escherichia coli (EPEC), one of the diarrheagenic E. coli pathotypes, is among the most important food-borne pathogens infecting children worldwide. Inhibition of serotonin transporter (SERT), which regulates extracellular availability of serotonin (5-HT), has been implicated previously in EPEC-associated diarrhea. EPEC was shown to inhibit SERT via activation of protein tyrosine phosphatase (PTPase), albeit the specific PTPase involved is not known. Current studies aimed to identify EPEC-activated PTPase and its role in SERT inhibition. Infection of Caco-2 monolayers with EPEC strain E2348/69 for 30 min increased the activity of Src-homology-2 domain containing PTPase (SHP2) but not SHP1 or PTPase 1B. Similarly, Western blot studies showed increased tyrosine phosphorylation of (p-tyrosine) SHP2, indicative of its activation. Concomitantly, EPEC infection decreased SERT p-tyrosine levels. This was associated with increased interaction of SHP2 with SERT, as evidenced by coimmunoprecipitation studies. To examine whether SHP2 directly influences SERT phosphorylation status or function, SHP2 cDNA plasmid constructs (wild type, constitutively active, or dominant negative) were overexpressed in Caco-2 cells by Amaxa electroporation. In the cells overexpressing constitutively active SHP2, SERT polypeptide showed complete loss of p-tyrosine. In addition, there was a decrease in SERT function, as measured by Na+Cl--sensitive [3H]5-HT uptake, and an increase in association of SERT with SHP2 in Caco-2 cells expressing constitutively active SHP2 compared with dominant-negative SHP2. Our data demonstrate that intestinal SERT is a target of SHP2 and reveal a novel mechanism by which a common food-borne pathogen uses cellular SHP2 to inhibit SERT.NEW & NOTEWORTHY The data presented in the current study reveal that intestinal serotonin transporter (SERT) is a target of the tyrosine phosphatase SHP2 and show a novel mechanism by which a common diarrheagenic pathogen, EPEC, activates cellular SHP2 to inhibit SERT function. These studies highlight host-pathogen interactions, which may be of therapeutic relevance in the management of diarrhea associated with enteric infections.


Assuntos
Enterócitos/metabolismo , Enterócitos/microbiologia , Escherichia coli Enteropatogênica/metabolismo , Escherichia coli/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Células CACO-2 , Humanos
3.
J Biol Chem ; 289(33): 23132-23140, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24904062

RESUMO

Intestinal NPC1L1 transporter is essential for cholesterol absorption and the maintenance of cholesterol homeostasis in the body. NPC1L1 is differentially expressed along the gastrointestinal tract with very low levels in the colon as compared with the small intestine. This study was undertaken to examine whether DNA methylation was responsible for segment-specific expression of NPC1L1. Treatment of mice with 5-azacytidine (i.p.) resulted in a significant dose-dependent increase in NPC1L1 mRNA expression in the colon. The lack of expression of NPC1L1 in the normal colon was associated with high levels of methylation in the area flanking the 3-kb fragment upstream of the initiation site of the mouse NPC1L1 gene in mouse colon as analyzed by EpiTYPER® MassARRAY®. The high level of methylation in the colon was observed in specific CpG dinucleotides and was significantly decreased in response to 5-azacytidine. Similar to mouse NPC1L1, 5-azacytidine treatment also increased the level of human NPC1L1 mRNA expression in the intestinal HuTu-80 cell line in a dose- and time-dependent manner. Silencing the expression of DNA methyltransferase DNMT1, -2, -3A, and -3B alone by siRNA did not affect NPC1L1 expression in HuTu-80 cells. However, the simultaneous attenuation of DNMT1 and -3B expression caused a significant increase in NPC1L1 mRNA expression as compared with control. Also, in vitro methylation of the human NPC1L1 promoter significantly decreased NPC1L1 promoter activity in human intestinal Caco2 cells. In conclusion, our data demonstrated for the first time that DNA methylation in the promoter region of the NPC1L1 gene appears to be a major mechanism underlying differential expression of NPC1L1 along the length of the gastrointestinal tract.


Assuntos
Colo/metabolismo , Metilação de DNA/fisiologia , Epigênese Genética/fisiologia , Mucosa Intestinal/metabolismo , Proteínas de Membrana/biossíntese , Proteínas de Membrana Transportadoras/biossíntese , Animais , Azacitidina/farmacologia , Células CACO-2 , Colo/citologia , Metilação de DNA/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Humanos , Mucosa Intestinal/citologia , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Camundongos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
4.
Am J Physiol Gastrointest Liver Physiol ; 304(2): G203-10, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23139223

RESUMO

The expression of intestinal Niemann-Pick C1-like 1 (NPC1L1) cholesterol transporter has been shown to be elevated in patients with diseases associated with hypercholesterolemia such as diabetes mellitus. High levels of glucose were shown to directly increase the expression of NPC1L1 in intestinal epithelial cells, but the underlying mechanisms are not fully defined. The present studies were, therefore, undertaken to examine the transcriptional regulation of NPC1L1 expression in human intestinal Caco2 cells in response to glucose. Removal of glucose from the culture medium of Caco2 cells for 24 h significantly decreased the NPC1L1 mRNA, protein expression, as well as the promoter activity. Glucose replenishment significantly increased the promoter activity of NPC1L1 in a dose-dependent manner compared with control cells. Exposure of Caco2 cells to nonmetabolizable form of glucose, 3-O-methyl-d-glucopyranose (OMG) had no effect on NPC1L1 promoter activity, indicating that the observed effects are dependent on glucose metabolism. Furthermore, glucose-mediated increase in promoter activity was abrogated in the presence of okadaic acid, suggesting the involvement of protein phosphatases. Glucose effects on several deletion constructs of NPC1L1 promoter demonstrated that cis elements mediating the effects of glucose are located in the region between -291 and +56 of NPC1L1 promoter. Consistent with the effects of glucose removal on NPC1L1 expression in Caco2 cells, 24-h fasting resulted in a significant decrease in the relative expression of NPC1L1 in mouse jejunum. In conclusion, glucose appears to directly modulate NPC1L1 expression via transcriptional mechanisms and the involvement of phosphatase-dependent pathways.


Assuntos
Glucose/metabolismo , Mucosa Intestinal/metabolismo , Jejuno/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Transcrição Gênica , Animais , Células CACO-2 , Colesterol/metabolismo , Inibidores Enzimáticos/farmacologia , Jejum/metabolismo , Glucose/análogos & derivados , Humanos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ácido Okadáico/farmacologia , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transfecção , Regulação para Cima
5.
J Nat Sci Biol Med ; 6(2): 468-71, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283856

RESUMO

This case report presented a karyotype and pedigree analysis of a case with unusual combination of dental anomalies: Generalized short roots, talon cusps, dens invagination, low alveolar bone heights, very prominent cusp of carabelli and protostylid on first permanent molars, taurodontism of second permanent molars, rotated, missing and impacted teeth. None of the anomalies alone are rare. However, until date, nonsyndromic pandental anomalies that are affecting entire dentition with detailed karyotype, pedigree and cone-beam computerized tomography analysis have not been reported. The occurrence of these anomalies is probably incidental as the conditions are etiologically unrelated.

6.
Pharmacogenomics ; 15(7): 909-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24956244

RESUMO

We describe a 64-year-old male of Indian descent with a history of atrial fibrillation who was started on warfarin after hospital admission for acute stroke. He received genotype-guided warfarin dosing as per the standard-of-care at our hospital, with daily dose recommendations provided by the pharmacogenetics service. Genotyping revealed the rare CYP2C9*1/*14 genotype and warfarin insensitive VKORC1 -1639GG and CYP4F2 433Met/Met genotypes. The patient received an initial warfarin loading dose of 4 mg for 2 days, followed by 2-3 mg/day for the following 11 days. He reached a therapeutic international normalized ratio on day 5, which was maintained over the following week. This report adds to the limited data of the effects of the CYP2C9*14 allele on warfarin dose requirements.


Assuntos
Fibrilação Atrial/tratamento farmacológico , Citocromo P-450 CYP2C9/genética , Relação Dose-Resposta a Droga , Varfarina/administração & dosagem , Alelos , Fibrilação Atrial/induzido quimicamente , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Varfarina/efeitos adversos
7.
PLoS One ; 9(1): e84221, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465397

RESUMO

Sterol Response Element Binding Protein 2 (SREBP2) transcription factor is a master regulator of cholesterol homeostasis. Treatment with statins, inhibitors of cholesterol synthesis, activates intestinal SREBP2, which may hinder their cholesterol-lowering effects. Overactivation of SREBP2 in mouse liver was shown to have no effect on plasma cholesterol. However, the influence of activating intestinal SREBP2 on plasma cholesterol is not known. We have generated a novel transgenic mouse model with intestine specific overexpression of active SREBP2 (ISR2) driven by villin promoter. ISR2 mice showed overexpression of active SREBP2 specifically in the intestine. Microarray analysis of jejunal RNA from ISR2 mice showed a significant increase in genes involved in fatty acid and cholesterol synthesis. Cholesterol and triglyceride (TG) in jejunum and liver (mg/g protein) were significantly increased in ISR2 vs wild type mice. Serum Cholesterol was significantly increased in VLDL and LDL fractions whereas the level of serum triglycerides was decreased in ISR2 vs wild type mice. In conclusion, activation of intestinal SREBP2 alone seems to be sufficient to increase plasma cholesterol, highlighting the essential role of intestine in maintaining cholesterol homeostasis in the body.


Assuntos
Colesterol/sangue , Mucosa Intestinal/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Animais , Western Blotting , Colesterol/metabolismo , LDL-Colesterol/sangue , VLDL-Colesterol/sangue , Jejuno/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Transgênicos , Reação em Cadeia da Polimerase em Tempo Real , Triglicerídeos/sangue , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa