Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Hered ; 114(2): 189-194, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36661278

RESUMO

Despite increasing sequencing efforts, numerous fish families still lack a reference genome, which complicates genetic research. One such understudied family is the sand lances (Ammodytidae, literally: "sand burrower"), a globally distributed clade of over 30 fish species that tend to avoid tidal currents by burrowing into the sand. Here, we present the first annotated chromosome-level genome assembly of the great sand eel (Hyperoplus lanceolatus). The genome assembly was generated using Oxford Nanopore Technologies long sequencing reads and Illumina short reads for polishing. The final assembly has a total length of 808.5 Mbp, of which 97.1% were anchored into 24 chromosome-scale scaffolds using proximity-ligation scaffolding. It is highly contiguous with a scaffold and contig N50 of 33.7 and 31.3 Mbp, respectively, and has a BUSCO completeness score of 96.9%. The presented genome assembly is a valuable resource for future studies of sand lances, as this family is of great ecological and commercial importance and may also contribute to studies aiming to resolve the suprafamiliar taxonomy of bony fishes.


Assuntos
Genoma , Perciformes , Animais , Anotação de Sequência Molecular , Perciformes/genética , Cromossomos/genética , Peixes/genética , Enguias/genética
2.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28931734

RESUMO

Identifying patterns in the effects of temperature on species' population abundances could help develop a general framework for predicting the consequences of climate change across different communities and realms. We used long-term population time series data from terrestrial, freshwater, and marine species communities within central Europe to compare the effects of temperature on abundance across a broad range of taxonomic groups. We asked whether there was an average relationship between temperatures in different seasons and annual abundances of species in a community, and whether species attributes (temperature range of distribution, range size, habitat breadth, dispersal ability, body size, and lifespan) explained interspecific variation in the relationship between temperature and abundance. We found that, on average, warmer winter temperatures were associated with greater abundances in terrestrial communities (ground beetles, spiders, and birds) but not always in aquatic communities (freshwater and marine invertebrates and fish). The abundances of species with large geographical ranges, larger body sizes, and longer lifespans tended to be less related to temperature. Our results suggest that climate change may have, in general, positive effects on species' abundances within many terrestrial communities in central Europe while the effects are less predictable in aquatic communities.


Assuntos
Biodiversidade , Mudança Climática , Ecossistema , Temperatura , Distribuição Animal , Animais , Tamanho Corporal , Europa (Continente) , Longevidade , Dinâmica Populacional , Estações do Ano
3.
Biology (Basel) ; 13(6)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38927269

RESUMO

The response of benthic habitats and organisms to bottom-contact fishing intensity is investigated in marine protected areas (MPAs) of the German EEZ in the North and Baltic Seas. We examined the current state of macrofauna biodiversity in 2020-2022. Comparative analysis for macrofauna (in- and epifauna) inhabiting nine Natura 2000 MPAs constitutes a baseline to assess the effects of bottom-contact fishing exclusion in the future. Aspects of spatial and temporal variability are briefly summarized and discussed. We provide a species list for each region, including 481 taxa, of which 79 were found in both regions, 183 only in the North Sea, and 219 only in the Baltic Sea. The Baltic Sea dataset surprisingly included higher numbers of taxa and revealed more Red List species. The share of major taxonomic groups (polychaetes, bivalves and amphipods) in species richness showed peculiar commonalities between the two regions. In the North Sea, multivariate analysis of community structure revealed significantly higher within-similarity and stronger separation between the considered MPAs compared to the Baltic MPAs. Salinity, temperature and sediment fractions of sand were responsible for over 60% of the variation in the North Sea macrofauna occurrence data. Salinity, mud fraction and bottom-contact fishing were the most important drivers in the Baltic Sea and, together with other considered environmental drivers, were responsible for 53% of the variation. This study identifies aspects of macrofauna occurrence that may be used to assess (causes of) future changes.

4.
GigaByte ; 2024: gigabyte105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38239770

RESUMO

The snake pipefish, Entelurus aequoreus (Linnaeus, 1758), is a northern Atlantic fish inhabiting open seagrass environments that recently expanded its distribution range. Here, we present a highly contiguous, near chromosome-scale genome of E. aequoreus. The final assembly spans 1.6 Gbp in 7,391 scaffolds, with a scaffold N50 of 62.3 Mbp and L50 of 12. The 28 largest scaffolds (>21 Mbp) span 89.7% of the assembly length. A BUSCO completeness score of 94.1% and a mapping rate above 98% suggest a high assembly completeness. Repetitive elements cover 74.93% of the genome, one of the highest proportions identified in vertebrates. Our demographic modeling identified a peak in population size during the last interglacial period, suggesting the species might benefit from warmer water conditions. Our updated snake pipefish assembly is essential for future analyses of the morphological and molecular changes unique to the Syngnathidae.

5.
GigaByte ; 2020: gigabyte6, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-36824592

RESUMO

Background: The common dragonet, Callionymus lyra, is one of three Callionymus species inhabiting the North Sea. All three species show strong sexual dimorphism. The males show strong morphological differentiation, e.g., species-specific colouration and size relations, while the females of different species have few distinguishing characters. Callionymus belongs to the 'benthic associated clade' of the order Syngnathiformes. The 'benthic associated clade' so far is not represented by genome data and serves as an important outgroup to understand the morphological transformation in 'long-snouted' syngnatiformes such as seahorses and pipefishes. Findings: Here, we present the chromosome-level genome assembly of C. lyra. We applied Oxford Nanopore Technologies' long-read sequencing, short-read DNBseq, and proximity-ligation-based scaffolding to generate a high-quality genome assembly. The resulting assembly has a contig N50 of 2.2 Mbp and a scaffold N50 of 26.7 Mbp. The total assembly length is 568.7 Mbp, of which over 538 Mbp were scaffolded into 19 chromosome-length scaffolds. The identification of 94.5% complete BUSCO genes indicates high assembly completeness. Additionally, we sequenced and assembled a multi-tissue transcriptome with a total length of 255.5 Mbp that was used to aid the annotation of the genome assembly. The annotation resulted in 19,849 annotated transcripts and identified a repeat content of 27.7%. Conclusions: The chromosome-level assembly of C. lyra provides a high-quality reference genome for future population genomic, phylogenomic, and phylogeographic analyses.

6.
Nat Ecol Evol ; 1(3): 67, 2017 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-28812743

RESUMO

Climate change, land-use change, pollution and exploitation are among the main drivers of species' population trends; however, their relative importance is much debated. We used a unique collection of over 1,000 local population time series in 22 communities across terrestrial, freshwater and marine realms within central Europe to compare the impacts of long-term temperature change and other environmental drivers from 1980 onwards. To disentangle different drivers, we related species' population trends to species- and driver-specific attributes, such as temperature and habitat preference or pollution tolerance. We found a consistent impact of temperature change on the local abundances of terrestrial species. Populations of warm-dwelling species increased more than those of cold-dwelling species. In contrast, impacts of temperature change on aquatic species' abundances were variable. Effects of temperature preference were more consistent in terrestrial communities than effects of habitat preference, suggesting that the impacts of temperature change have become widespread for recent changes in abundance within many terrestrial communities of central Europe.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa