Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Neurosci ; 40(45): 8734-8745, 2020 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-33046555

RESUMO

Decline of protein quality control in neurons contributes to age-related neurodegenerative disorders caused by misfolded proteins. 4E-BP1 is a key node in the regulation of protein synthesis, as activated 4E-BP1 represses global protein translation. Overexpression of 4E-BP1 mediates the benefits of dietary restriction and can counter metabolic stress, and 4E-BP1 disinhibition on mTORC1 repression may be neuroprotective; however, whether 4E-BP1 overexpression is neuroprotective in mammalian neurons is yet to be fully explored. To address this question, we generated 4E-BP1-overexpressing transgenic mice and confirmed marked reductions in protein translation in 4E-BP1-overexpressing primary neurons. After documenting that 4E-BP1-overexpressing neurons are resistant to proteotoxic stress elicited by brefeldin A treatment, we exposed primary neurons to three different Parkinson's disease (PD)-linked toxins (rotenone, maneb, or paraquat) and documented significant protection in neurons from newborn male and female 4E-BP1-OE transgenic mice. We observed 4E-BP1-dependent upregulation of genes encoding proteins that comprise the mitochondrial unfolded protein response, and noted 4E-BP1 overexpression required activation of the mitochondrial unfolded protein response for neuroprotection against rotenone toxicity. We also tested whether 4E-BP1 could prevent α-synuclein neurotoxicity by treating 4E-BP1-overexpressing primary neurons with α-synuclein preformed fibrils, and we observed marked reductions in α-synuclein aggregation and neurotoxicity, thus validating that 4E-BP1 is a powerful suppressor of PD-linked pathogenic insults. Our results indicate that increasing 4E-BP1 expression or enhancing 4E-BP1 activation can robustly induce the mitochondrial unfolded protein response and thus could be an appealing strategy for treating a variety of neurodegenerative diseases, including especially PD.SIGNIFICANCE STATEMENT In neurodegenerative disease, misfolded proteins accumulate and overwhelm normal systems of homeostasis and quality control. One mechanism for improving protein quality control is to reduce protein translation. Here we investigated whether neuronal overexpression of 4E-BP1, a key repressor of protein translation, can protect against misfolded protein stress and toxicities linked to Parkinson's disease, and found that 4E-BP1 overexpression prevented cell death in neurons treated with brefeldin A, rotenone, maneb, paraquat, or preformed fibrils of α-synuclein. When we sought the basis for 4E-BP1 neuroprotection, we discovered that 4E-BP1 activation promoted the mitochondrial unfolded protein response. Our findings highlight 4E-BP1 as a therapeutic target in neurodegenerative disease and underscore the importance of the mitochondrial unfolded protein response in neuroprotection against various insults.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Ciclo Celular/genética , Mitocôndrias/metabolismo , Neurônios/patologia , Doença de Parkinson Secundária/genética , Desdobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Animais , Animais Recém-Nascidos , Brefeldina A/farmacologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Doença de Parkinson Secundária/induzido quimicamente , Cultura Primária de Células , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Rotenona/toxicidade , Desacopladores/toxicidade , alfa-Sinucleína/biossíntese
2.
Glia ; 69(7): 1736-1748, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33694209

RESUMO

Microglia are the innate immune cells of the central nervous system that adopt rapid functional changes in response to Damage Associated Molecular Patterns, including aggregated ß-Amyloid (Aß) found in Alzheimer's disease (AD). microRNAs (miRNAs) are post-transcriptional modulators that influence the timing and magnitude of microglia inflammatory responses by downregulating the expression of inflammatory effectors. Recent studies implicate miR-155, a miRNA known to regulate inflammatory responses, in the pathogenesis of neurodegenerative disorders including multiple sclerosis, ALS, familial Parkinson's disease, and AD. In this work, we asked if miR-155 expression in microglia modifies cellular behaviors in response to fibrillar Aß1-42 (fAß1-42 ), in vitro. We hypothesized that in microglia, miR-155 expression would impact the internalization and catabolism of extracellular fAß1-42 . Primary microglia stimulated with lipopolysaccharide demonstrate fast upregulation of miR-155 followed by delayed upregulation of miR-146a, an anti-inflammatory miRNA. Conditional overexpression of miR-155 in microglia resulted in significant upregulation of miR-146a. Conditional deletion of miR-155 promoted transit of fAß1-42 to low-pH compartments where catabolism occurs, while miR-155 overexpression decreases fAß1-42 catabolism. Uptake of fAß1-42 across the plasma membrane increased with both up and downregulation of miR-155 expression. Taken together, our results support the hypothesis that inflammatory signaling influences the ability of microglia to catabolize fAß1-42 through interconnected mechanisms modulated by miR-155. Understanding how miRNAs modulate the ability of microglia to catabolize fAß1-42 will further elucidate the role of cellular players and molecular crosstalk in AD pathophysiology.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Humanos , Lipopolissacarídeos/toxicidade , MicroRNAs/genética , MicroRNAs/metabolismo , Microglia/metabolismo
3.
Acta Neuropathol ; 136(3): 425-443, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29725819

RESUMO

Amyotrophic lateral sclerosis type 4 (ALS4) is a rare, early-onset, autosomal dominant form of ALS, characterized by slow disease progression and sparing of respiratory musculature. Dominant, gain-of-function mutations in the senataxin gene (SETX) cause ALS4, but the mechanistic basis for motor neuron toxicity is unknown. SETX is a RNA-binding protein with a highly conserved helicase domain, but does not possess a low-complexity domain, making it unique among ALS-linked disease proteins. We derived ALS4 mouse models by expressing two different senataxin gene mutations (R2136H and L389S) via transgenesis and knock-in gene targeting. Both approaches yielded SETX mutant mice that develop neuromuscular phenotypes and motor neuron degeneration. Neuropathological characterization of SETX mice revealed nuclear clearing of TDP-43, accompanied by TDP-43 cytosolic mislocalization, consistent with the hallmark pathology observed in human ALS patients. Postmortem material from ALS4 patients exhibited TDP-43 mislocalization in spinal cord motor neurons, and motor neurons from SETX ALS4 mice displayed enhanced stress granule formation. Immunostaining analysis for nucleocytoplasmic transport proteins Ran and RanGAP1 uncovered nuclear membrane abnormalities in the motor neurons of SETX ALS4 mice, and nuclear import was delayed in SETX ALS4 cortical neurons, indicative of impaired nucleocytoplasmic trafficking. SETX ALS4 mice thus recapitulated ALS disease phenotypes in association with TDP-43 mislocalization and provided insight into the basis for TDP-43 histopathology, linking SETX dysfunction to common pathways of ALS motor neuron degeneration.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Neurônios Motores/patologia , Degeneração Neural/genética , RNA Helicases/genética , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , DNA Helicases , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neurônios Motores/metabolismo , Enzimas Multifuncionais , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Fenótipo , RNA Helicases/metabolismo
4.
Hum Mol Genet ; 24(14): 3908-17, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25859008

RESUMO

The neurodegenerative disorder spinocerebellar ataxia type 7 (SCA7) is caused by a polyglutamine (polyQ) expansion in the ataxin-7 protein, categorizing SCA7 as one member of a large class of heritable neurodegenerative proteinopathies. Cleavage of ataxin-7 by the protease caspase-7 has been demonstrated in vitro, and the accumulation of proteolytic cleavage products in SCA7 patients and mouse models has been identified as an early pathological change. However, it remains unknown whether a causal relationship exists between ataxin-7 proteolysis and in vivo SCA7 disease progression. To determine whether caspase cleavage is a critical event in SCA7 disease pathogenesis, we generated transgenic mice expressing polyQ-expanded ataxin-7 with a second-site mutation (D266N) to prevent caspase-7 proteolysis. When we compared SCA7-D266N mice with SCA7 mice lacking the D266N mutation, we found that SCA7-D266N mice exhibited improved motor performance, reduced neurodegeneration and substantial lifespan extension. Our findings indicate that proteolysis at the D266 caspase-7 cleavage site is an important mediator of ataxin-7 neurotoxicity, suggesting that inhibition of caspase-7 cleavage of polyQ-ataxin-7 may be a promising therapeutic strategy for this untreatable disorder.


Assuntos
Ataxina-7/metabolismo , Doenças Neurodegenerativas/genética , Peptídeos/metabolismo , Regiões Promotoras Genéticas , Proteólise , Degeneração Retiniana/genética , Animais , Ácido Aspártico/metabolismo , Ataxina-7/genética , Caspase 7/genética , Caspase 7/metabolismo , Modelos Animais de Doenças , Terapia Genética , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/terapia , Fenótipo , Células de Purkinje/metabolismo , Degeneração Retiniana/terapia
5.
J Neurochem ; 136 Suppl 1: 49-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25708596

RESUMO

Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.


Assuntos
Técnicas de Cultura de Células/métodos , Dependovirus/genética , Vetores Genéticos/genética , Microglia/fisiologia , Transdução Genética/métodos , Animais , Animais Recém-Nascidos , Células Cultivadas , Feminino , Vetores Genéticos/administração & dosagem , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
6.
J Immunol ; 192(1): 358-66, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24319262

RESUMO

Neuroinflammation occurs in acute and chronic CNS injury, including stroke, traumatic brain injury, and neurodegenerative diseases. Microglia are specialized resident myeloid cells that mediate CNS innate immune responses. Disease-relevant stimuli, such as reactive oxygen species (ROS), can influence microglia activation. Previously, we observed that p53, a ROS-responsive transcription factor, modulates microglia behaviors in vitro and in vivo, promoting proinflammatory functions and suppressing downregulation of the inflammatory response and tissue repair. In this article we describe a novel mechanism by which p53 modulates the functional differentiation of microglia both in vitro and in vivo. Adult microglia from p53-deficient mice have increased expression of the anti-inflammatory transcription factor c-Maf. To determine how p53 negatively regulates c-Maf, we examined the impact of p53 on known c-Maf regulators. MiR-155 is a microRNA that targets c-Maf. We observed that cytokine-induced expression of miR-155 was suppressed in p53-deficient microglia. Furthermore, Twist2, a transcriptional activator of c-Maf, is increased in p53-deficient microglia. We identified recognition sites in the 3' untranslated region of Twist2 mRNA that are predicted to interact with two p53-dependent microRNAs: miR-34a and miR-145. In this article, we demonstrate that miR-34a and -145 are regulated by p53 and negatively regulate Twist2 and c-Maf expression in microglia and the RAW macrophage cell line. Taken together, these findings support the hypothesis that p53 activation induced by local ROS or accumulated DNA damage influences microglia functions and that one specific molecular target of p53 in microglia is c-Maf.


Assuntos
MicroRNAs/genética , Microglia/metabolismo , Proteínas Proto-Oncogênicas c-maf/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Modelos Biológicos , Fenótipo , Proteínas Proto-Oncogênicas c-maf/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
7.
Brain ; 138(Pt 7): 2005-19, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981964

RESUMO

Endophilin-B1, also known as Bax-interacting factor 1 (Bif-1, and encoded by SH3GLB1), is a multifunctional protein involved in apoptosis, autophagy and mitochondrial function. We recently described a unique neuroprotective role for neuron-specific alternatively spliced isoforms of endophilin-B1. To examine whether endophilin-B1-mediated neuroprotection could be a novel therapeutic target for Alzheimer's disease we used a double mutant amyloid precursor protein and presenilin 1 (APPswe/PSEN1dE9) mouse model of Alzheimer's disease and observed that expression of neuron-specific endophilin-B1 isoforms declined with disease progression. To determine if this reduction in endophilin-B1 has a functional role in Alzheimer's disease pathogenesis, we crossed endophilin-B1(-/-) mice with APPswe/PSEN1dE9 mice. Deletion of endophilin-B1 accelerated disease onset and progression in 6-month-old APPswe/PSEN1dE9/endophilin-B1(-/-) mice, which showed more plaques, astrogliosis, synaptic degeneration, cognitive impairment and mortality than APPswe/PSEN1dE9 mice. In mouse primary cortical neuron cultures, overexpression of neuron-specific endophilin-B1 isoforms protected against amyloid-ß-induced apoptosis and mitochondrial dysfunction. Additionally, protein and mRNA levels of neuron-specific endophilin-B1 isoforms were also selectively decreased in the cerebral cortex and in the synaptic compartment of patients with Alzheimer's disease. Flow sorting of synaptosomes from patients with Alzheimer's disease demonstrated a negative correlation between amyloid-ß and endophilin-B1 levels. The importance of endophilin-B1 in neuronal function was further underscored by the development of synaptic degeneration and cognitive and motor impairment in endophilin-B1(-/-) mice by 12 months. Our findings suggest that endophilin-B1 is a key mediator of a feed-forward mechanism of Alzheimer's disease pathogenesis where amyloid-ß reduces neuron-specific endophilin-B1, which in turn enhances amyloid-ß accumulation and neuronal vulnerability to stress.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Neurônios/patologia , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Humanos , Immunoblotting , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinaptossomos/metabolismo , Sinaptossomos/patologia
8.
J Neurosci ; 34(7): 2674-83, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24523556

RESUMO

Bax-interacting factor 1 (Bif-1, also known as endophilin B1) is a multifunctional protein involved in the regulation of apoptosis, mitochondrial morphology, and autophagy. Previous studies in non-neuronal cells have shown that Bif-1 is proapoptotic and promotes mitochondrial fragmentation. However, the role of Bif-1 in postmitotic neurons has not been investigated. In contrast to non-neuronal cells, we now report that in neurons Bif-1 promotes viability and mitochondrial elongation. In mouse primary cortical neurons, Bif-1 knockdown exacerbated apoptosis induced by the DNA-damaging agent camptothecin. Neurons from Bif-1-deficient mice contained fragmented mitochondria and Bif-1 knockdown in wild-type neurons also resulted in fragmented mitochondria which were more depolarized, suggesting mitochondrial dysfunction. During ischemic stroke, Bif-1 expression was downregulated in the penumbra of wild-type mice. Consistent with Bif-1 being required for neuronal viability, Bif-1-deficient mice developed larger infarcts and an exaggerated astrogliosis response following ischemic stroke. Together, these data suggest that, in contrast to non-neuronal cells, Bif-1 is essential for the maintenance of mitochondrial morphology and function in neurons, and that loss of Bif-1 renders neurons more susceptible to apoptotic stress. These unique actions may relate to the presence of longer, neuron-specific Bif-1 isoforms, because only these forms of Bif-1 were able to rescue deficiencies caused by Bif-1 suppression. This finding not only demonstrates an unexpected role for Bif-1 in the nervous system but this work also establishes Bif-1 as a potential therapeutic target for the treatment of neurological diseases, especially degenerative disorders characterized by alterations in mitochondrial dynamics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Apoptose/fisiologia , Mitocôndrias/ultraestrutura , Neurônios/metabolismo , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Imunofluorescência , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Mitocôndrias/metabolismo , Neurônios/ultraestrutura , Isoformas de Proteínas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia
9.
Hum Mol Genet ; 22(5): 890-903, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23197655

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a dominantly inherited neurodegenerative disorder caused by a CAG - polyglutamine (polyQ) repeat expansion in the ataxin-7 gene. In polyQ disorders, synaptic dysfunction and neurodegeneration may develop prior to symptom onset. However, conditional expression studies of polyQ disease models demonstrate that suppression of gene expression can yield complete reversal of established behavioral abnormalities. To determine if SCA7 neurological and neurodegenerative phenotypes are reversible, we crossed PrP-floxed-SCA7-92Q BAC transgenic mice with a tamoxifen-inducible Cre recombinase transgenic line, CAGGS-Cre-ER™. PrP-floxed-SCA7-92Q BAC;CAGGS-Cre-ER™ bigenic mice were treated with a single dose of tamoxifen 1 month after the onset of detectable ataxia, which resulted in ~50% reduction of polyQ-ataxin-7 expression. Tamoxifen treatment halted or reversed SCA7 motor symptoms, reduced ataxin-7 aggregation in Purkinje cells (PCs), and prevented loss of climbing fiber (CF)-PC synapses in comparison to vehicle-treated bigenic animals and tamoxifen-treated PrP-floxed-SCA7-92Q BAC single transgenic mice. Despite this phenotype rescue, reduced ataxin-7 expression did not result in full recovery of cerebellar molecular layer thickness or prevent Bergmann glia degeneration. These results demonstrate that suppression of mutant gene expression by only 50% in a polyQ disease model can have a significant impact on disease phenotypes, even when initiated after the onset of detectable behavioral deficits. The findings reported here are consistent with the emerging view that therapies aimed at reducing neurotoxic gene expression hold the potential to halt or reverse disease progression in afflicted patients, even after the onset of neurological disability.


Assuntos
Locomoção , Proteínas do Tecido Nervoso/genética , Peptídeos , Ataxias Espinocerebelares/genética , Animais , Ataxina-7 , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Locomoção/genética , Locomoção/fisiologia , Camundongos , Camundongos Transgênicos , Mutação , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Ataxias Espinocerebelares/fisiopatologia , Expansão das Repetições de Trinucleotídeos
10.
J Neurosci ; 33(4): 1357-65, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345212

RESUMO

Maintaining proper mitochondrial length is essential for normal mitochondrial function in neurons. Mitochondrial fragmentation has been associated with neuronal cell death caused by a variety of experimental toxic stressors. Despite the fact that oxidative stress is a hallmark of neurodegenerative conditions and aging and the resulting activation of p53 is believed to contribute to the neuropathology, little is still known regarding changes in mitochondrial morphology in p53-dependent neuronal death. Therefore, we specifically addressed the relationship between genotoxic stress, p53 activation, and the regulation of mitochondrial morphology in neurons. In cultured postnatal mouse cortical neurons, treatment with the DNA-damaging agent camptothecin (CPT) resulted in elongated mitochondria, in contrast to fragmented mitochondria observed upon staurosporine and glutamate treatment. In fibroblasts, however, CPT resulted in fragmented mitochondria. CPT treatment in neurons suppressed expression of the mitochondrial fission protein Drp1 and the E3 ubiquitin ligase parkin. The presence of elongated mitochondria and the declines in Drp1 and parkin expression occurred before the commitment point for apoptosis. The CPT-induced changes in Drp1 and parkin were not observed in p53-deficient neurons, while p53 overexpression alone was sufficient to reduce the expression of the two proteins. Elevating Drp1 or parkin expression before CPT treatment enhanced neuronal viability and restored a normal pattern of mitochondrial morphology. The present findings demonstrate that genotoxic stress in neurons results in elongated mitochondria in contrast to fission induced by other forms of stress, and p53-dependent declines in Drp1 and parkin levels contribute to altered mitochondrial morphology and cell death.


Assuntos
Dano ao DNA/fisiologia , GTP Fosfo-Hidrolases/biossíntese , Proteínas Associadas aos Microtúbulos/biossíntese , Mitocôndrias/patologia , Proteínas Mitocondriais/biossíntese , Neurônios/patologia , Ubiquitina-Proteína Ligases/biossíntese , Animais , Morte Celular/fisiologia , Células Cultivadas , Dinaminas , Imunofluorescência , GTP Fosfo-Hidrolases/genética , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Mitocondriais/genética , Neurônios/metabolismo , Estresse Oxidativo/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética
11.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221017

RESUMO

mTORC1 is the key rheostat controlling the cellular metabolic state. Of the various inputs to mTORC1, the most potent effector of intracellular nutrient status is amino acid supply. Despite an established role for MAP4K3 in promoting mTORC1 activation in the presence of amino acids, the signaling pathway by which MAP4K3 controls mTORC1 activation remains unknown. Here, we examined the process of MAP4K3 regulation of mTORC1 and found that MAP4K3 represses the LKB1-AMPK pathway to achieve robust mTORC1 activation. When we sought the regulatory link between MAP4K3 and LKB1 inhibition, we discovered that MAP4K3 physically interacts with the master nutrient regulatory factor sirtuin-1 (SIRT1) and phosphorylates SIRT1 to repress LKB1 activation. Our results reveal the existence of a novel signaling pathway linking amino acid satiety with MAP4K3-dependent suppression of SIRT1 to inactivate the repressive LKB1-AMPK pathway and thereby potently activate the mTORC1 complex to dictate the metabolic disposition of the cell.


Assuntos
Proteínas Quinases Ativadas por AMP , Sirtuína 1 , Transdução de Sinais , Aminoácidos , Alvo Mecanístico do Complexo 1 de Rapamicina
12.
Acta Neuropathol Commun ; 11(1): 164, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37845749

RESUMO

Identifying genetic modifiers of familial amyotrophic lateral sclerosis (ALS) may reveal targets for therapeutic modulation with potential application to sporadic ALS. GGGGCC (G4C2) repeat expansions in the C9orf72 gene underlie the most common form of familial ALS, and generate toxic arginine-containing dipeptide repeats (DPRs), which interfere with membraneless organelles, such as the nucleolus. Here we considered senataxin (SETX), the genetic cause of ALS4, as a modifier of C9orf72 ALS, because SETX is a nuclear helicase that may regulate RNA-protein interactions involved in ALS dysfunction. After documenting that decreased SETX expression enhances arginine-containing DPR toxicity and C9orf72 repeat expansion toxicity in HEK293 cells and primary neurons, we generated SETX fly lines and evaluated the effect of SETX in flies expressing either (G4C2)58 repeats or glycine-arginine-50 [GR(50)] DPRs. We observed dramatic suppression of disease phenotypes in (G4C2)58 and GR(50) Drosophila models, and detected a striking relocalization of GR(50) out of the nucleolus in flies co-expressing SETX. Next-generation GR(1000) fly models, that show age-related motor deficits in climbing and movement assays, were similarly rescued with SETX co-expression. We noted that the physical interaction between SETX and arginine-containing DPRs is partially RNA-dependent. Finally, we directly assessed the nucleolus in cells expressing GR-DPRs, confirmed reduced mobility of proteins trafficking to the nucleolus upon GR-DPR expression, and found that SETX dosage modulated nucleolus liquidity in GR-DPR-expressing cells and motor neurons. These findings reveal a hitherto unknown connection between SETX function and cellular processes contributing to neuron demise in the most common form of familial ALS.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Humanos , Animais , Esclerose Lateral Amiotrófica/metabolismo , Dipeptídeos/genética , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Arginina/genética , Arginina/metabolismo , Células HEK293 , Neurônios Motores/metabolismo , Drosophila/metabolismo , RNA/metabolismo , Demência Frontotemporal/genética , Expansão das Repetições de DNA/genética , DNA Helicases/genética , RNA Helicases/genética , Enzimas Multifuncionais/genética
13.
J Neurosci ; 31(45): 16269-78, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072678

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is a dominantly inherited disorder characterized by cerebellum and brainstem neurodegeneration. SCA7 is caused by a CAG/polyglutamine (polyQ) repeat expansion in the ataxin-7 gene. We previously reported that directed expression of polyQ-ataxin-7 in Bergmann glia (BG) in transgenic mice leads to ataxia and non-cell-autonomous Purkinje cell (PC) degeneration. To further define the cellular basis of SCA7, we derived a conditional inactivation mouse model by inserting a loxP-flanked ataxin-7 cDNA with 92 repeats into the translational start site of the murine prion protein (PrP) gene in a bacterial artificial chromosome (BAC). The PrP-floxed-SCA7-92Q BAC mice developed neurological disease, and exhibited cerebellar degeneration and BG process loss. To inactivate polyQ-ataxin-7 expression in specific cerebellar cell types, we crossed PrP-floxed-SCA7-92Q BAC mice with Gfa2-Cre transgenic mice (to direct Cre to BG) or Pcp2-Cre transgenic mice (which yields Cre in PCs and inferior olive). Excision of ataxin-7 from BG partially rescued the behavioral phenotype, but did not prevent BG process loss or molecular layer thinning, while excision of ataxin-7 from PCs and inferior olive provided significantly greater rescue and prevented both pathological changes, revealing a non-cell-autonomous basis for BG pathology. When we prevented expression of mutant ataxin-7 in BG, PCs, and inferior olive by deriving Gfa2-Cre;Pcp2-Cre;PrP-floxed-SCA7-92Q BAC triple transgenic mice, we noted a dramatic improvement in SCA7 disease phenotypes. These findings indicate that SCA7 disease pathogenesis involves a convergence of alterations in a variety of different cell types to fully recapitulate the cerebellar degeneration.


Assuntos
Mutação/genética , Proteínas do Tecido Nervoso/genética , Neurônios/patologia , Ataxias Espinocerebelares/genética , Análise de Variância , Animais , Ataxina-7 , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/patologia , Peptídeos/genética , Fenótipo , Príons/genética , RNA Mensageiro/metabolismo , Teste de Desempenho do Rota-Rod , Ataxias Espinocerebelares/patologia , Ataxias Espinocerebelares/fisiopatologia
14.
PLoS Genet ; 4(11): e1000257, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19008940

RESUMO

At least 25 inherited disorders in humans result from microsatellite repeat expansion. Dramatic variation in repeat instability occurs at different disease loci and between different tissues; however, cis-elements and trans-factors regulating the instability process remain undefined. Genomic fragments from the human spinocerebellar ataxia type 7 (SCA7) locus, containing a highly unstable CAG tract, were previously introduced into mice to localize cis-acting "instability elements," and revealed that genomic context is required for repeat instability. The critical instability-inducing region contained binding sites for CTCF -- a regulatory factor implicated in genomic imprinting, chromatin remodeling, and DNA conformation change. To evaluate the role of CTCF in repeat instability, we derived transgenic mice carrying SCA7 genomic fragments with CTCF binding-site mutations. We found that CTCF binding-site mutation promotes triplet repeat instability both in the germ line and in somatic tissues, and that CpG methylation of CTCF binding sites can further destabilize triplet repeat expansions. As CTCF binding sites are associated with a number of highly unstable repeat loci, our findings suggest a novel basis for demarcation and regulation of mutational hot spots and implicate CTCF in the modulation of genetic repeat instability.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Instabilidade Genômica , Mutação , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/metabolismo , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos , Animais , Ataxina-7 , Sítios de Ligação , Fator de Ligação a CCCTC , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/genética
15.
Cell Rep ; 37(9): 110062, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34852229

RESUMO

A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target.


Assuntos
Ataxina-7/metabolismo , Doenças Cerebelares/patologia , Reparo do DNA , Histonas/metabolismo , Neurônios/patologia , Peptídeos/genética , Ataxias Espinocerebelares/complicações , Acetilação , Animais , Ataxina-7/genética , Doenças Cerebelares/etiologia , Doenças Cerebelares/metabolismo , Feminino , Histonas/genética , Humanos , Masculino , Camundongos , Neurônios/metabolismo
16.
J Neurosci ; 29(48): 15134-44, 2009 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-19955365

RESUMO

Polyglutamine (polyQ) expansion within the ataxin-7 protein, a member of the STAGA [SPT3-TAF(II)31-GCN5L acetylase] and TFTC (GCN5 and TRRAP) chromatin remodeling complexes, causes the neurodegenerative disease spinocerebellar ataxia type 7 (SCA7). Proteolytic processing of ataxin-7 by caspase-7 generates N-terminal toxic polyQ-containing fragments that accumulate with disease progression and play an important role in SCA7 pathogenesis. To elucidate the basis for the toxicity of these fragments, we evaluated which posttranslational modifications of the N-terminal fragment of ataxin-7 modulate turnover and toxicity. Here, we show that mutating lysine 257 (K257), an amino acid adjacent to the caspase-7 cleavage site of ataxin-7 regulates turnover of the truncation product in a repeat-dependent manner. Modification of ataxin-7 K257 by acetylation promotes accumulation of the fragment, while unmodified ataxin-7 is degraded. The degradation of the caspase-7 cleavage product is mediated by macroautophagy in cell culture and primary neuron models of SCA7. Consistent with this, the fragment colocalizes with autophagic vesicle markers, and enhanced fragment accumulation increases in these lysosomal structures. We suggest that the levels of fragment accumulation within the cell is a key event in SCA7 neurodegeneration, and enhancing clearance of polyQ-containing fragments may be an effective target to reduce neurotoxicity in SCA7.


Assuntos
Autofagia/genética , Caspase 7/metabolismo , Mucoproteínas/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Processamento de Proteína Pós-Traducional/genética , Acetilação , Animais , Animais Recém-Nascidos , Ataxina-7 , Caspase 7/genética , Células Cultivadas , Cerebelo/citologia , Modelos Animais de Doenças , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Neurônios/fisiologia , Príons/genética , Príons/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Interferência de RNA/fisiologia , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologia , Transfecção/métodos
17.
J Neurosci ; 29(7): 1987-97, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19228953

RESUMO

Spinal and bulbar muscular atrophy (SBMA) is an inherited neuromuscular disorder caused by a polyglutamine (polyQ) repeat expansion in the androgen receptor (AR). PolyQ-AR neurotoxicity may involve generation of an N-terminal truncation fragment, as such peptides occur in SBMA patients and mouse models. To elucidate the basis of SBMA, we expressed N-terminal truncated AR in motor neuron-derived cells and primary cortical neurons. Accumulation of polyQ-AR truncation fragments in the cytosol resulted in neurodegeneration and apoptotic, caspase-dependent cell death. Using primary neurons from mice transgenic or deficient for apoptosis-related genes, we determined that polyQ-AR apoptotic activation is fully dependent on Bax. Jun N-terminal kinase (JNK) was required for apoptotic pathway activation through phosphorylation of c-Jun. Expression of polyQ-AR in DP5/Hrk null neurons yielded significant protection against apoptotic activation, but absence of Bim did not provide protection, apparently due to compensatory upregulation of DP5/Hrk or other BH3-only proteins. Misfolded AR protein in the cytosol thus initiates a cascade of events beginning with JNK and culminating in Bax-dependent, intrinsic pathway activation, mediated in part by DP5/Hrk. As apoptotic mediators are candidates for toxic fragment generation and other cellular processes linked to neuron dysfunction, delineation of the apoptotic activation pathway induced by polyQ-expanded AR may shed light on the pathogenic cascade in SBMA and other motor neuron diseases.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Apoptose/genética , Neuropeptídeos/metabolismo , Peptídeos/metabolismo , Receptores Androgênicos/metabolismo , Expansão das Repetições de Trinucleotídeos/genética , Proteína X Associada a bcl-2/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Células Cultivadas , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/fisiopatologia , Neurônios/metabolismo , Neurônios/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Dobramento de Proteína , Receptores Androgênicos/química , Receptores Androgênicos/genética , Transdução de Sinais/genética
18.
Nat Neurosci ; 9(10): 1302-11, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16936724

RESUMO

Non-neuronal cells may be pivotal in neurodegenerative disease, but the mechanistic basis of this effect remains ill-defined. In the polyglutamine disease spinocerebellar ataxia type 7 (SCA7), Purkinje cells undergo non-cell-autonomous degeneration in transgenic mice. We considered the possibility that glial dysfunction leads to Purkinje cell degeneration, and generated mice that express ataxin-7 in Bergmann glia of the cerebellum with the Gfa2 promoter. Bergmann glia-specific expression of mutant ataxin-7 was sufficient to produce ataxia and neurodegeneration. Expression of the Bergmann glia-specific glutamate transporter GLAST was reduced in Gfa2-SCA7 mice and was associated with impaired glutamate transport in cultured Bergmann glia, cerebellar slices and cerebellar synaptosomes. Ultrastructural analysis of Purkinje cells revealed findings of dark cell degeneration consistent with excitotoxic injury. Our studies indicate that impairment of glutamate transport secondary to glial dysfunction contributes to SCA7 neurodegeneration, and suggest a similar role for glial dysfunction in other polyglutamine diseases and SCAs.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/metabolismo , Expressão Gênica/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Doenças Neurodegenerativas/metabolismo , Neuroglia/metabolismo , Fatores Etários , Idoso , Animais , Animais Recém-Nascidos , Ataxina-7 , Comportamento Animal , Western Blotting/métodos , Encéfalo/patologia , Células Cultivadas , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Ácido Glutâmico/metabolismo , Humanos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão/métodos , Proteínas do Tecido Nervoso/genética , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neuroglia/ultraestrutura , Transfecção/métodos
19.
Heliyon ; 6(6): e04165, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32577562

RESUMO

The Senataxin (SETX) protein exhibits strong sequence conservation with the helicase domain of the yeast protein Sen1p, and recessive SETX mutations cause a severe ataxia, known as Ataxia with Oculomotor Apraxia type 2, while dominant SETX mutations cause Amyotrophic Lateral Sclerosis type 4. SETX is a very low abundance protein, and its expression is tightly regulated, such that large increases in mRNA levels fail to significantly increase protein levels. Despite this, transient transfection in cell culture can boost SETX protein levels on an individual cell basis. Here we found that over-expression of normal SETX, but not enzymatically-dead SETX, is associated with S-phase cell-cycle arrest in HEK293A cells. As SETX interacts with the nuclear exosome to ensure degradation of incomplete RNA transcripts, and SETX localizes to sites of collision between the DNA replication machinery and the RNAP II complex, altered dosage or aberrant function of SETX may impede this process to promote S-phase cell-cycle arrest. Because neurons are enriched for long transcripts with additional antisense regulatory transcription, collisions of RNAP II complexes may occur in such post-mitotic cells, underscoring a role for SETX in maintaining neuron homeostasis.

20.
J Alzheimers Dis ; 77(2): 675-688, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32741831

RESUMO

BACKGROUND: Early-onset familial Alzheimer disease (EOFAD) is caused by heterozygous variants in the presenilin 1 (PSEN1), presenilin 2 (PSEN2), and APP genes. Decades after their discovery, the mechanisms by which these genes cause Alzheimer's disease (AD) or promote AD progression are not fully understood. While it is established that presenilin (PS) enzymatic activity produces amyloid-ß (Aß), PSs also regulate numerous other cellular functions, some of which intersect with known pathogenic drivers of neurodegeneration. Accumulating evidence suggests that microglia, resident innate immune cells in the central nervous system, play a key role in AD neurodegeneration. OBJECTIVE: Previous work has identified a regulatory role for PS2 in microglia. We hypothesized that PSEN2 variants lead to dysregulated microglia, which could further contribute to disease acceleration. To mimic the genotype of EOFAD patients, we created a transgenic mouse expressing PSEN2 N141I on a mouse background expressing one wildtype PS2 and two PS1 alleles. RESULTS: Microglial expression of PSEN2 N141I resulted in impaired γ-secretase activity as well as exaggerated inflammatory cytokine release, NFκB activity, and Aß internalization. In vivo, PS2 N141I mice showed enhanced IL-6 and TREM2 expression in brain as well as reduced branch number and length, an indication of "activated" morphology, in the absence of inflammatory stimuli. LPS intraperitoneal injection resulted in higher inflammatory gene expression in PS2 N141I mouse brain relative to controls. CONCLUSION: Our findings demonstrate that PSEN2 N141I heterozygosity is associated with disrupted innate immune homeostasis, suggesting EOFAD variants may promote disease progression through non-neuronal cells beyond canonical dysregulated Aß production.


Assuntos
Doença de Alzheimer/genética , Variação Genética/genética , Heterozigoto , Microglia/fisiologia , Fenótipo , Presenilina-2/genética , Doença de Alzheimer/patologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa