Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39092922

RESUMO

Despite the potential for their application, the magnetic behavior of complexes containing 4d and 5d metal ions is underexplored, evidencing the need for benchmark multi-technique studies on simple molecules. We report here a structural and magnetic study on osmium(III) acetylacetonate [Os(acac)3]. X-ray single crystal diffraction did not allow us to determine the structure of the ß-polymorph of [Os(acac)3]. The combined magnetic (dc magnetic measurements on powder and cantilever torque magnetometry on single crystal) and spectroscopic (electron paramagnetic resonance, EPR) characterization is here used to provide further evidence that its structure is indeed the one of the orthorhombic "missing polymorph", analogous to the ruthenium(III) derivative. Our study shows that all acetylacetonate complexes of the eighth group of the periodic table show dimorphism and are isomorphic. The EPR characterization allowed the experimental assessment of the easy axis nature of the ground doublet and the determination of the first hyperfine coupling in an osmium complex. Torque magnetometry, applied here for the first time on an osmium-based molecule, determined the orientation of the easy axis along the pseudo C3 axis of the complex. Ac magnetometric measurements revealed in-field slow relaxation of the magnetization further slowed by the suppression of dipolar fields via magnetic dilution in the isostructural gallium(III) analogue.

2.
Inorg Chem ; 63(17): 7912-7925, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38620046

RESUMO

We designed [VO(bdhb)] (1') as a new electronic qubit containing an oxovanadium(IV) ion (S = 1/2) embraced by a single bis(ß-diketonato) ligand [H2bdhb = 1,3-bis(3,5-dioxo-1-hexyl)benzene]. The synthesis afforded three different crystal phases, all of which unexpectedly contain dimers with formula [(VO)2(bdhb)2] (1). A trigonal form (1h) with a honeycomb structure and 46% of solvent-accessible voids quantitatively transforms over time into a monoclinic solvatomorph 1m and minor amounts of a triclinic solventless phase (1a). In a static magnetic field, 1h and 1m have detectably slow magnetic relaxation at low temperatures through quantum tunneling and Raman mechanisms. Angle-resolved electron paramagnetic resonance (EPR) spectra on single crystals revealed signatures of low-dimensional magnetic behavior, which is solvatomorph-dependent, being the closest interdimer V···V separations (6.7-7.5 Å) much shorter than intramolecular V···V distances (11.9-12.1 Å). According to 1H diffusion ordered spectroscopy (DOSY) and EPR experiments, the complex adopts the desired monomeric structure in organic solution and its geometry was inferred from density functional theory (DFT) calculations. Spin relaxation measurements in a frozen toluene-d8/CD2Cl2 matrix yielded Tm values reaching 13 µs at 10 K, and coherent spin manipulations were demonstrated by Rabi nutation experiments at 70 K. The neutral quasi-macrocyclic structure, featuring nuclear spin-free donors and additional possibilities for chemical functionalization, makes 1' a new convenient spin-coherent building block in quantum technologies.

3.
Angew Chem Int Ed Engl ; 62(48): e202312936, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37812016

RESUMO

In the development of two-qubit quantum gates, precise control over the intramolecular spin-spin interaction between molecular spin units plays a pivotal role. A weak but measurable exchange coupling is especially important for achieving selective spin addressability that allows controlled manipulation of the computational basis states |00⟩ |01⟩ |10⟩ |11⟩ by microwave pulses. Here, we report the synthesis and Electron Paramagnetic Resonance (EPR) study of a heterometallic meso-meso (m-m) singly-linked VIV O-CuII porphyrin dimer. X-band continuous wave EPR measurements in frozen solutions suggest a ferromagnetic exchange coupling of ca. 8 ⋅ 10-3  cm-1 . This estimation is supported by Density Functional Theory calculations, which also allow disentangling the ferro- and antiferromagnetic contributions to the exchange. Pulsed EPR experiments show that the dimer maintains relaxation times similar to the monometallic CuII porphyrins. The addressability of the two individual spins is made possible by the different g-tensors of VIV and CuII -ions, in contrast to homometallic dimers where tilting of the porphyrin planes plays a key role. Therefore, single-spin addressability in the heterometallic dimer can be maintained even with small tilting angles, as expected when deposited on surface, unlocking the full potential of molecular quantum gates for practical applications.

4.
Inorg Chem ; 61(35): 14004-14018, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-35998349

RESUMO

Photophysical and magnetic properties arising from both ground and excited states of lanthanoid ions are relevant for numerous applications. These properties can be substantially affected, both adversely and beneficially, by ligand-to-metal charge-transfer (LMCT) states. However, probing LMCT states remains a significant challenge in f-block chemistry, particularly in the solid state. Intriguingly, the europium compounds [EuIII(18-c-6)(X4Cat)(NO3)]·MeCN (18-c-6 = 18-crown-6; X = Cl (tetrachlorocatecholate, 1-Eu) or Br (tetrabromocatecholate, 2-Eu) are distinctly darkly-colored, in marked contrast to the analogues with other lanthanoid ions in the 1-Ln and 2-Ln series (Ln = La, Ce, Nd, Gd, Tb, and Dy). Herein, we report a multi-technique investigation of these compounds that has allowed elucidation of the LMCT character of the relevant absorption bands using magnetometry, absorption and emission spectroscopies, and solid-state electrochemistry. To support experimental observations, we present a semi-quantitative multireference ab initio model that (i) captures the anomalously low-lying LMCT excited state observed in the visible spectrum of 1-Eu (and its absence in the other 1-Ln analogues); (ii) elucidates the contribution of the LMCT excitation to the crystal field split 7FJ ground-state wave functions; and (iii) identifies the crucial role played by radial dynamical correlation of the EuIII 4f electrons in the description of the LMCT excited state, modeled by the inclusion of 4f → 5f excitations in the optimized wave function. By providing a set of experimental and theoretical tools, this work establishes a framework for the elucidation of LMCT excited states in lanthanoid compounds in the solid state.

5.
J Am Chem Soc ; 143(21): 8108-8115, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34024105

RESUMO

The combined experimental and computational study of the 13 magnetic complexes belonging to the Na[LnDOTA(H2O)] (H4DOTA = tetraazacyclododecane-N,N',N″,N‴-tetraacetic acid and Ln = Ce-Yb) family allowed us to identify a new trend: the orientation of the magnetic anisotropy tensors of derivatives differing by seven f electrons practically coincide. We name this trend the fn+7 effect. Experiments and theory fully agree on the match between the magnetic reference frames (e.g., the easy, intermediate, and hard direction). The shape of the magnetic anisotropy of some couples of ions differing by seven f electrons might seem instead different at first look, but our analysis explains a hidden similarity. We thus pave the way toward a reliable predictivity of the magnetic anisotropy of lanthanide complexes with a consequent reduced need of computational and synthetical efforts. We also offer a way to gain information on ions with a relatively small total angular momentum (i.e., Sm3+ and Eu3+) and on the radioactive Pm3+, which are difficult to investigate experimentally.

6.
Inorg Chem ; 60(12): 8692-8703, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34110135

RESUMO

This article reports the syntheses, characterization, structural description, together with magnetic and spectroscopic properties of two isostructural molecular magnets based on the chiral ligand N,N'-bis((1,2-diphenyl-(pyridine-2-yl)methylene)-(R,R/S,S)-ethane-1,2-diamine), L1, of general formula [Ln2(RR-L1)2(Cl6)]·MeOH·1.5H2O, (Ln = Ce (1) or Nd (2)). Multifrequency electron paramagnetic resonance (EPR), cantilever torque magnetometry (CTM) measurements, and ab initio calculations allowed us to determine single-ion magnetic anisotropy and intramolecular magnetic interactions in both compounds, evidencing a more important role of the anisotropic exchange for the NdIII derivative. The comparison of experimental and theoretical data indicates that, in the case of largely rhombic lanthanide ions, ab initio calculations can fail in determining the orientation of the weakest components, while being reliable in determining their principal values. However, they remain of paramount importance to set the analysis of EPR and CTM on sound basis, thus obtaining a very precise picture of the magnetic interactions in these systems. Finally, the electronic structure of the two complexes, as obtained by this approach, is consistent with the absence of zero-field slow relaxation observed in ac susceptibility.

7.
Inorg Chem ; 60(1): 140-151, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33305944

RESUMO

The selection of molecular spin qubits with a long coherence time, Tm, is a central task for implementing molecule-based quantum technologies. Even if a sufficiently long Tm can be achieved through an efficient synthetic strategy and ad hoc experimental measurement procedures, many factors contributing to the loss of coherence still need to be thoroughly investigated and understood. Vibrational properties and nuclear spins of hydrogens are two of them. The former plays a paramount role, but a detailed theoretical investigation aimed at studying their effects on the spin dynamics of molecular complexes such as the benchmark phthalocyanine (Pc) is still missing, whereas the effect of the latter deserves to be examined in detail for such a class of compounds. In this work, we adopted a combined theoretical and experimental approach to investigate the relaxation properties of classical [Cu(Pc)] and a CuII complex based on the ligand tetrakis(thiadiazole)porphyrazine (H2TTDPz), characterized by a hydrogen-free molecular structure. Systematic calculations of molecular vibrations exemplify the effect of normal modes on the spin-lattice relaxation process, unveiling a different contribution to T1 depending on the symmetry of normal modes. Moreover, we observed that an appreciable Tm enhancement could be achieved by removing hydrogens from the ligand.

8.
Inorg Chem ; 60(15): 11273-11286, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34264061

RESUMO

We report here a comprehensive characterization of a 3d organometallic complex, [V(Cp)2Cl2] (Cp = cyclopentadienyl), which can be considered as a prototypical multilevel nuclear qudit (nuclear spin I = 7/2) hyperfine coupled to an electronic qubit (electronic spin S = 1/2). By combining complementary magnetic resonant techniques, such as pulsed electron paramagnetic resonance (EPR) and broadband nuclear magnetic resonance (NMR), we extensively characterize its Spin Hamiltonian parameters and its electronic and nuclear spin dynamics. Moreover, we demonstrate the possibility to manipulate the qubit-qudit multilevel structure by resonant microwave and radiofrequency pulses, driving coherent Rabi oscillations between targeted electronuclear states. The obtained results demonstrate that this simple complex is a promising candidate for quantum computing applications.

9.
Angew Chem Int Ed Engl ; 60(28): 15276-15280, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904633

RESUMO

In the past few years, the chirality and magnetism of molecules have received notable interest for the development of novel molecular devices. Chiral helicenes combine both these properties, and thus their nanostructuration is the first step toward developing new multifunctional devices. Here, we present a novel strategy to deposit a sub-monolayer of enantiopure thia[4]helicene radical cations on a pre-functionalized Au(111) substrate. This approach results in both the paramagnetic character and the chemical structure of these molecules being maintained at the nanoscale, as demonstrated by in-house characterizations. Furthermore, synchrotron-based X-ray natural circular dichroism confirmed that the handedness of the thia[4]helicene is preserved on the surface.

10.
Angew Chem Int Ed Engl ; 60(5): 2588-2593, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33051985

RESUMO

The coherence time of the 17-electron, mixed sandwich complex [CpTi(cot)], (η8 -cyclooctatetraene)(η5 -cyclopentadienyl)titanium, reaches 34 µs at 4.5 K in a frozen deuterated toluene solution. This is a remarkable coherence time for a highly protonated molecule. The intramolecular distances between the Ti and H atoms provide a good compromise between instantaneous and spin diffusion sources of decoherence. Ab initio calculations at the molecular and crystal packing levels reveal that the characteristic low-energy ring rotations of the sandwich framework do not yield a too detrimental spin-lattice relaxation because of their small spin-phonon coupling. The volatility of [CpTi(cot)] and the accessibility of the semi-occupied, non-bonding d z 2 orbital make this neutral compound an ideal candidate for single-qubit addressing on surface and quantum sensing in combination with scanning probe microscopy.

11.
Inorg Chem ; 59(3): 1763-1777, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31967457

RESUMO

Chromium(II)-based extended metal atom chains have been the focus of considerable discussion regarding their symmetric versus unsymmetric structure and magnetism. We have now investigated four complexes of this class, namely, [Cr3(dpa)4X2] and [Cr5(tpda)4X2] with X = Cl- and SCN- [Hdpa = dipyridin-2-yl-amine; H2tpda = N2,N6-di(pyridin-2-yl)pyridine-2,6-diamine]. By dc/ac magnetic techniques and EPR spectroscopy, we found that all these complexes have easy-axis anisotropies of comparable magnitude in their S = 2 ground state (|D| = 1.5-1.8 cm-1) and behave as single-molecule magnets at low T. Ligand-field and DFT/CASSCF calculations were used to explain the similar magnetic properties of tri- versus pentachromium(II) strings, in spite of their different geometrical preferences and electronic structure. For both X ligands, the ground structure is unsymmetric in the pentachromium(II) species (i.e., with an alternation of long and short Cr-Cr distances) but is symmetric in their shorter congeners. Analysis of the electronic structure using quasi-restricted molecular orbitals (QROs) showed that the four unpaired electrons in Cr5 species are largely localized in four 3d-like QROs centered on the terminal, "isolated" Cr2+ ion. In Cr3 complexes, they occupy four nonbonding combinations of 3d-like orbitals centered only on the two terminal metals. In both cases, then, QRO eigenvalues closely mirror the 3d-level pattern of the terminal ions, whose coordination environment remains quite similar irrespective of chain length. We conclude that the extent of unpaired-electron delocalization has little impact on the magnetic anisotropy of these wire-like molecular species.

12.
Inorg Chem ; 58(7): 4230-4243, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30892028

RESUMO

The family of complexes of general formula [Co(Me ntpa)(Xdiox)]+ (tpa = tris(2-pyridylmethyl)amine, n = 0-3 corresponds to successive methylation of the 6-position of the pyridine rings; X = Br4, Cl4, H4, 3,5-Me2, 3,5- tBu2; diox = dioxolene) was investigated by density functional theory (DFT) calculations to predict the likelihood of valence tautomerism (VT). The OPBE functional with relativistic and solvent corrections allowed accurate reproduction of trends in spin-state energetics, affording the prediction of VT in complex [Co(Me3tpa)(Br4diox)]+ (1+). One-electron oxidation of neutral precursor [CoII(Me3tpa)(Br4cat)] (1) enabled isolation of target compounds 1(PF6) and 1(BPh4). Solution variable-temperature UV-vis absorption and Evans method magnetic susceptibility data confirm DFT predictions that 1+ exists in a temperature-dependent valence tautomeric equilibrium between low-spin Co(III)-catecholate and high-spin Co(II)-semiquinonate forms. The solution VT transition temperature of 1+ is solvent-tunable with critical temperatures in the range of 291-359 K for the solvents measured. Solid-state magnetic susceptibility measurements of 1(PF6) and 1(BPh4) reveal the onset of VT transitions above room temperature.

13.
J Am Chem Soc ; 140(38): 12090-12101, 2018 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-30145887

RESUMO

Practical implementation of highly coherent molecular spin qubits for challenging technological applications, such as quantum information processing or quantum sensing, requires precise organization of electronic qubit molecular components into extended frameworks. Realization of spatial control over qubit-qubit distances can be achieved by coordination chemistry approaches through an appropriate choice of the molecular building blocks. However, translating single qubit molecular building units into extended arrays does not guarantee a priori retention of long quantum coherence and spin-lattice relaxation times due to the introduced modifications over qubit-qubit reciprocal distances and molecular crystal lattice phonon structure. In this work, we report the preparation of a three-dimensional (3D) metal-organic framework (MOF) based on vanadyl qubits, [VO(TCPP-Zn2-bpy)] (TCPP = tetracarboxylphenylporphyrinate; bpy = 4,4'-bipyridyl) (1), and the investigation of how such structural modifications influence qubits' performances. This has been done through a multitechnique approach where the structure and properties of a representative molecular building block of formula [VO(TPP)] (TPP = tetraphenylporphyrinate) (2) have been compared with those of the 3D MOF 1. Pulsed electron paramagnetic resonance measurements on magnetically diluted samples in titanyl isostructural analogues revealed that coherence times are retained almost unchanged for 1 with respect to 2 up to room temperature, while the temperature dependence of the spin-lattice relaxation time revealed insights into the role of low-energy vibrations, detected through terahertz spectroscopy, on the spin dynamics.

14.
Chemistry ; 24(55): 14768-14785, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992641

RESUMO

The combination of lanthanoid nitrates with 18-crown-6 (18-c-6) and tetrahalocatecholate (X4 Cat2- , X=Cl, Br) ligands has afforded two compound series [Ln(18-c-6)(X4 Cat)(NO3 )]⋅MeCN (X=Cl, 1-Ln; X=Br, 2-Ln; Ln=La, Ce, Nd, Gd, Tb, Dy). The 18-c-6 ligands occupy equatorial positions of a distorted sphenocorona geometry, whereas the charged ligands occupy the axial positions. The analogues of both series with Ln=Ce, Nd, Tb and Dy exhibit out-of-phase ac magnetic susceptibility signals in the presence of an applied magnetic field, indicative of slow magnetization relaxation. When diluted into a diamagnetic La host to reduce dipolar interactions, the Dy analogue exhibits slow relaxation up to 20 K in the absence of an applied dc field. Concerted magnetic measurements, EPR spectroscopy, and ab initio calculations have allowed elucidation of the mechanisms responsible for slow magnetic relaxation. A consistent approach has been applied to quantitatively model the relaxation data for different lanthanoid analogues, suggesting that the spin dynamics are governed by Raman processes at higher temperatures, transitioning to a dominant phonon bottleneck process as the temperature is decreased, with an observed T-6 rather than the usual T-2 dependence (T is temperature). This anomalous thermal dependence of the phonon bottleneck relaxation is consistent with anharmonic effects in the lattice dynamics, which was predicted by Van Vleck more than 70 years ago.

15.
Chemistry ; 24(35): 8857-8868, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29655240

RESUMO

The homoleptic mononuclear compound [Co(bpp-COOMe)2 ](ClO4 )2  (1) (bpp-COOMe=methyl 2,6-di(pyrazol-1-yl)pyridine-4-carboxylate) crystallizes in the monoclinic C2/c space group, and the cobalt(II) ion possesses a pseudo-octahedral environment given by the two mer-coordinated tridentate ligands. Direct-current magnetic data, single-crystal torque magnetometry, and EPR measurements disclosed the easy-axis nature of this cobalt(II) complex, which shows single-molecule magnet behavior when a static field is applied in alternating-current susceptibility measurements. Diamagnetic dilution in the zinc(II) analogue [Zn(bpp-COOMe)2 ](ClO4 )2  (2) afforded the derivative [Zn0.95 Co0.05 (bpp-COOMe)2 ](ClO4 )2  (3), which exhibits slow relaxation of magnetization even in zero field thanks to the reduction of dipolar interactions. Theoretical calculations confirmed the overall electronic structure and the magnetic scenario of the compound as drawn by experimental data, thus confirming the spin-phonon Raman relaxation mechanism, and a direct quantum tunneling in the ground state as the most plausible relaxation pathway in zero field.

16.
Inorg Chem ; 57(2): 731-740, 2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29280628

RESUMO

Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1/2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 µs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

17.
J Am Chem Soc ; 139(12): 4338-4341, 2017 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-28263593

RESUMO

Here we report the investigation of the magnetization dynamics of a vanadyl complex with diethyldithiocarbamate (Et2dtc-) ligands, namely [VO(Et2dtc)2] (1), in both solid-state and frozen solution. This showed an anomalous and unprecedentedly observed field dependence of the relaxation time, which was modeled with three contributions to the relaxation mechanism. The temperature dependence of the weight of the two processes dominating at low fields was found to well correlate with the low energy vibrations as determined by THz spectroscopy. This detailed experimental comparative study represents a fundamental step to understand the spin dynamics of potential molecular quantum bits, and enriches the guidelines to design molecule-based systems with enhanced quantum coherence.

18.
Inorg Chem ; 56(19): 11668-11675, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915022

RESUMO

The reactions of cobalt(II) perchlorate with a diazine tetratopic helicand, H4L, in the presence of sodium carbonate afford two coordination polymers constructed from tetranuclear anionic helicates as building blocks: ∞3[Co4L3Na4(H2O)4]·4H2O (1) and ∞2[Co5L3Na2(H2O)9]·2.7H2O·DMF (2). The tetranuclear triple-stranded helicates, {CoII4L3}4-, are connected in 1 by sodium(I) ions and in 2 by sodium(I) and cobalt(II) ions (H4L results from the condensation reaction between 3-formylsalicylic acid and hydrazine). The crystal structures of the two compounds have been solved. In both compounds the anionic helicates interact with the assembling cations through the carboxylato oxygen atoms. Compound 2 features chains resulting from connecting the tetranuclear helicates through cobalt(II) ions. The analysis of the magnetic properties of compounds 1 and 2 evidenced a dominant antiferromagnetic coupling for 1, resulting in a diamagnetic ground state. In contrast, the magnetic behavior of 2 is dominated at low temperature by the CoII ion which connects the antiferromagnetically coupled {CoII4} helical moieties. The ac magnetic measurements for 2 reveal the occurrence of slow relaxation of the magnetization that is due to the single, uncorrelated cobalt(II) ions, which are diluted in an essentially diamagnetic matrix of {CoII4} moieties (ΔEeff = 26.7 ± 0.3 cm-1 with τ0 = (2.3 ± 0.2) × 10-6 s).

19.
Inorg Chem ; 56(8): 4729-4739, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28375619

RESUMO

We report the syntheses and the magnetic characterization of a new series of lanthanide complexes, in which the Ce, Nd, Gd, Dy, Er, and Yb derivatives show single-molecule magnet behavior. These complexes, named Ln(trenovan), where H3trenovan is tris(((3-methoxysalicylidene)amino)ethyl)amine, exhibit trigonal symmetry and the Ln(III) ion is heptacoordinated. Their molecular structure is then very similar to that of the previously reported Ln(trensal) series, where H3trensal is 2,2',2″-tris(salicylideneimino)triethylamine. This prompted us to use the spectroscopic and magnetic properties of the Ln(trensal) family (Ln = Nd, Tb, Dy, Ho, Er, and Tm) to obtain a set of crystal-field parameters to be used as starting point to determine the electronic structures and magnetic anisotropy of the analogous Ln(trenovan) complexes using the CONDON computational package. The obtained results were then used to discuss the electron paramagnetic resonance (EPR) and ac susceptibility results. As a whole, the obtained results indicate for this type of complexes single-molecule magnet behavior is not related to the presence of an anisotropy barrier, due to a charge distribution of the ligand around the lanthanoid, which results in highly mixed ground states in terms of MJ composition of the states. The crucial parameter in determining the slow relaxation of the magnetization is then rather the number of unpaired electrons (only Kramers ions showing in-field slow relaxation) than the shape of the charge distribution for different Ln(III).

20.
J Am Chem Soc ; 138(7): 2154-7, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26853512

RESUMO

Here we report the investigation of the magnetic relaxation and the quantum coherence of vanadyl phthalocyanine, VOPc, a multifunctional and easy-processable potential molecular spin qubit. VOPc in its pure form (1) and its crystalline dispersions in the isostructural diamagnetic host TiOPc in different stoichiometric ratios, namely VOPc:TiOPc 1:10 (2) and 1:1000 (3), were investigated via a multitechnique approach based on the combination of alternate current (AC) susceptometry, continuous wave, and pulsed electron paramagnetic resonance (EPR) spectroscopy. AC susceptibility measurements revealed a linear increase of the relaxation rate with temperature up to 20 K, as expected for a direct mechanism, but τ remains slow over a very wide range of applied static field values (up to ∼5 T). Pulsed EPR spectroscopy experiments on 3 revealed quantum coherence up to room temperature with T(m) ∼1 µs at 300 K, representing the highest value obtained to date for molecular electronic spin qubits. Rabi oscillations are observed in this nuclear spin-active environment ((1)H and (14)N nuclei) at room temperature also for 2, indicating an outstanding robustness of the quantum coherence in this molecular semiconductor exploitable in spintronic devices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa