Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(10): e2317851121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38416684

RESUMO

Since its introduction in the human population, SARS-CoV-2 has evolved into multiple clades, but the events in its intrahost diversification are not well understood. Here, we compare three-dimensional (3D) self-organized neural haplotype maps (SOMs) of SARS-CoV-2 from thirty individual nasopharyngeal diagnostic samples obtained within a 19-day interval in Madrid (Spain), at the time of transition between clades 19 and 20. SOMs have been trained with the haplotype repertoire present in the mutant spectra of the nsp12- and spike (S)-coding regions. Each SOM consisted of a dominant neuron (displaying the maximum frequency), surrounded by a low-frequency neuron cloud. The sequence of the master (dominant) neuron was either identical to that of the reference Wuhan-Hu-1 genome or differed from it at one nucleotide position. Six different deviant haplotype sequences were identified among the master neurons. Some of the substitutions in the neural clouds affected critical sites of the nsp12-nsp8-nsp7 polymerase complex and resulted in altered kinetics of RNA synthesis in an in vitro primer extension assay. Thus, the analysis has identified mutations that are relevant to modification of viral RNA synthesis, present in the mutant clouds of SARS-CoV-2 quasispecies. These mutations most likely occurred during intrahost diversification in several COVID-19 patients, during an initial stage of the pandemic, and within a brief time period.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/genética , Haplótipos , Proteínas não Estruturais Virais , RNA Viral
2.
J Virol ; 97(12): e0151123, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38092661

RESUMO

Upon the emergence of SARS-CoV-2 in the human population, it was conjectured that for this coronavirus the dynamic intra-host heterogeneity typical of RNA viruses would be toned down. Nothing of this sort is observed. Here we review the main observations on the complexity and diverse composition of SARS-CoV-2 mutant spectra sampled from infected patients, within the framework of quasispecies dynamics. The analyses suggest that the information provided by myriads of genomic sequences within infected individuals may have a predictive value of the genomic sequences that acquire epidemiological relevance. Possibilities to reconcile the presence of broad mutant spectra in the large RNA coronavirus genome with its encoding a 3' to 5' exonuclease proofreading-repair activity are considered. Indeterminations in the behavior of individual viral genomes provide a benefit for the survival of the ensemble. We propose that this concept falls in the domain of "stochastic thinking," a notion that applies also to cellular processes, as a means for biological systems to face unexpected needs.


Assuntos
COVID-19 , Vírus de RNA , SARS-CoV-2 , Humanos , COVID-19/virologia , Genoma Viral , Quase-Espécies , Vírus de RNA/genética , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
3.
PLoS Pathog ; 18(1): e1010210, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085375

RESUMO

In the course of experiments aimed at deciphering the inhibition mechanism of mycophenolic acid and ribavirin in hepatitis C virus (HCV) infection, we observed an inhibitory effect of the nucleoside guanosine (Gua). Here, we report that Gua, and not the other standard nucleosides, inhibits HCV replication in human hepatoma cells. Gua did not directly inhibit the in vitro polymerase activity of NS5B, but it modified the intracellular levels of nucleoside di- and tri-phosphates (NDPs and NTPs), leading to deficient HCV RNA replication and reduction of infectious progeny virus production. Changes in the concentrations of NTPs or NDPs modified NS5B RNA polymerase activity in vitro, in particular de novo RNA synthesis and template switching. Furthermore, the Gua-mediated changes were associated with a significant increase in the number of indels in viral RNA, which may account for the reduction of the specific infectivity of the viral progeny, suggesting the presence of defective genomes. Thus, a proper NTP:NDP balance appears to be critical to ensure HCV polymerase fidelity and minimal production of defective genomes.


Assuntos
Guanosina/metabolismo , Hepacivirus/metabolismo , Mutação INDEL/fisiologia , Nucleotídeos/metabolismo , Replicação Viral/fisiologia , Linhagem Celular Tumoral , Guanosina/farmacologia , Hepatite C/metabolismo , Humanos , RNA Viral/genética , Replicação Viral/efeitos dos fármacos
4.
Curr Top Microbiol Immunol ; 439: 197-235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592247

RESUMO

Fitness of viruses has become a standard parameter to quantify their adaptation to a biological environment. Fitness determinations for RNA viruses (and some highly variable DNA viruses) meet with several uncertainties. Of particular interest are those that arise from mutant spectrum complexity, absence of population equilibrium, and internal interactions among components of a mutant spectrum. Here, concepts, fitness measurements, limitations, and current views on experimental viral fitness landscapes are discussed. The effect of viral fitness on resistance to antiviral agents is covered in some detail since it constitutes a widespread problem in antiviral pharmacology, and a challenge for the design of effective antiviral treatments. Recent evidence with hepatitis C virus suggests the operation of mechanisms of antiviral resistance additional to the standard selection of drug-escape mutants. The possibility that high replicative fitness may be the driver of such alternative mechanisms is considered. New broad-spectrum antiviral designs that target viral fitness may curtail the impact of drug-escape mutants in treatment failures. We consider to what extent fitness-related concepts apply to coronaviruses and how they may affect strategies for COVID-19 prevention and treatment.


Assuntos
COVID-19 , Vírus , Humanos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Vírus/genética , Mutação , Replicação Viral
5.
Antimicrob Agents Chemother ; 67(7): e0039423, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37367486

RESUMO

The concept of a mild mutagen was coined to describe a minor mutagenic activity exhibited by some nucleoside analogues that potentiated their efficacy as antiretroviral agents. In the present study, we report the mild mutagen activity of sofosbuvir (SOF) for hepatitis C virus (HCV). Serial passages of HCV in human hepatoma cells, in the presence of SOF at a concentration well below its cytotoxic concentration 50 (CC50) led to pre-extinction populations whose mutant spectra exhibited a significant increase of C→U transitions, relative to populations passaged in the absence of SOF. This was reflected in an increase in several diversity indices that were used to characterize viral quasispecies. The mild mutagenic activity of SOF was largely absent when it was tested with isogenic HCV populations that displayed high replicative fitness. Thus, SOF can act as a mild mutagen for HCV, depending on HCV fitness. Possible mechanisms by which the SOF mutagenic activity may contribute to its antiviral efficacy are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Humanos , Sofosbuvir/farmacologia , Sofosbuvir/uso terapêutico , Hepacivirus/genética , Mutagênicos/farmacologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Genótipo , Ribavirina/uso terapêutico , Resultado do Tratamento , Quimioterapia Combinada
6.
Antimicrob Agents Chemother ; 67(1): e0131522, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36602354

RESUMO

We report that ribavirin exerts an inhibitory and mutagenic activity on SARS-CoV-2-infecting Vero cells, with a therapeutic index higher than 10. Deep sequencing analysis of the mutant spectrum of SARS-CoV-2 replicating in the absence or presence of ribavirin indicated an increase in the number of mutations, but not in deletions, and modification of diversity indices, expected from a mutagenic activity. Notably, the major mutation types enhanced by replication in the presence of ribavirin were A→G and U→C transitions, a pattern which is opposite to the dominance of G→A and C→U transitions previously described for most RNA viruses. Implications of the inhibitory activity of ribavirin, and the atypical mutational bias produced on SARS-CoV-2, for the search for synergistic anti-COVID-19 lethal mutagen combinations are discussed.


Assuntos
COVID-19 , Ribavirina , Animais , Chlorocebus aethiops , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , SARS-CoV-2/genética , Células Vero , Mutação , Mutagênicos/farmacologia
7.
Int J Mol Sci ; 24(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37569568

RESUMO

MicroRNAs (miRNAs) encapsulated in extracellular vesicles (EVs) are potential diagnostic and prognostic biomarkers. However, discrepancies in miRNA patterns and their validation are still frequent due to differences in sample origin, EV isolation, and miRNA sequencing methods. The aim of the present study is to find a reliable EV isolation method for miRNA sequencing, adequate for clinical application. To this aim, two comparative studies were performed in parallel with the same human plasma sample: (i) isolation and characterization of EVs obtained using three procedures: size exclusion chromatography (SEC), iodixanol gradient (GRAD), and its combination (SEC+GRAD) and (ii) evaluation of the yield of miRNA sequences obtained using NextSeq 500 (Illumina) and three miRNA library preparation protocols: NEBNext, NEXTFlex, and SMARTer smRNA-seq. The conclusion of comparison (i) is that recovery of the largest amount of EVs and reproducibility were attained with SEC, but GRAD and SEC+GRAD yielded purer EV preparations. The conclusion of (ii) is that the NEBNext library showed the highest reproducibility in the number of miRNAs recovered and the highest diversity of miRNAs. These results render the combination of GRAD EV isolation and NEBNext library preparation for miRNA retrieval as adequate for clinical applications using plasma samples.


Assuntos
Vesículas Extracelulares , MicroRNAs , Humanos , Reprodutibilidade dos Testes , MicroRNAs/genética , Vesículas Extracelulares/genética , Cromatografia em Gel , Plasma
8.
J Virol ; 94(6)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31852791

RESUMO

Previous studies documented that long-term hepatitis C virus (HCV) replication in human hepatoma Huh-7.5 cells resulted in viral fitness gain, expansion of the mutant spectrum, and several phenotypic alterations. In the present work, we show that mutational waves (changes in frequency of individual mutations) occurred continuously and became more prominent as the virus gained fitness. They were accompanied by an increasing proportion of heterogeneous genomic sites that affected 1 position in the initial HCV population and 19 and 69 positions at passages 100 and 200, respectively. Analysis of biological clones of HCV showed that these dynamic events affected infectious genomes, since part of the fluctuating mutations became incorporated into viable genomes. While 17 mutations were scored in 3 biological clones isolated from the initial population, the number reached 72 in 3 biological clones from the population at passage 200. Biological clones differed in their responses to antiviral inhibitors, indicating a phenotypic impact of viral dynamics. Thus, HCV adaptation to a specific constant environment (cell culture without external influences) broadens the mutant repertoire and does not focus the population toward a limited number of dominant genomes. A retrospective examination of mutant spectra of foot-and-mouth disease virus passaged in cell cultures suggests a parallel behavior here described for HCV. We propose that virus diversification in a constant environment has its basis in the availability of multiple alternative mutational pathways for fitness gain. This mechanism of broad diversification should also apply to other replicative systems characterized by high mutation rates and large population sizes.IMPORTANCE The study shows that extensive replication of an RNA virus in a constant biological environment does not limit exploration of sequence space and adaptive options. There was no convergence toward a restricted set of adapted genomes. Mutational waves and mutant spectrum broadening affected infectious genomes. Therefore, profound modifications of mutant spectrum composition and consensus sequence diversification are not exclusively dependent on environmental alterations or the intervention of population bottlenecks.


Assuntos
Adaptação Fisiológica , Técnicas de Cultura de Células , Hepacivirus/fisiologia , Mutação , Replicação Viral , Linhagem Celular Tumoral , Humanos
9.
J Clin Microbiol ; 58(12)2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-32999010

RESUMO

Despite the high virological response rates achieved with current directly acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 2% to 5% of treated patients do not achieve a sustained viral response. The identification of amino acid substitutions associated with treatment failure requires analytical designs, such as subtype-specific ultradeep sequencing (UDS) methods, for HCV characterization and patient management. Using this procedure, we have identified six highly represented amino acid substitutions (HRSs) in NS5A and NS5B of HCV, which are not bona fide resistance-associated substitutions (RAS), from 220 patients who failed therapy. They were present frequently in basal and posttreatment virus of patients who failed different DAA-based therapies. Contrary to several RAS, HRSs belong to the acceptable subset of substitutions according to the PAM250 replacement matrix. Their mutant frequency, measured by the number of deep sequencing reads within the HCV quasispecies that encode the relevant substitutions, ranged between 90% and 100% in most cases. They also have limited predicted disruptive effects on the three-dimensional structures of the proteins harboring them. Possible mechanisms of HRS origin and dominance, as well as their potential predictive value for treatment response, are discussed.


Assuntos
Hepatite C Crônica , Hepatite C , Substituição de Aminoácidos , Antivirais/farmacologia , Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Genótipo , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Hepatite C Crônica/tratamento farmacológico , Humanos , Falha de Tratamento , Proteínas não Estruturais Virais/genética
12.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31570400

RESUMO

Lethal mutagenesis is an antiviral approach that consists in extinguishing a virus by an excess of mutations acquired during replication in the presence of a mutagenic agent, often a nucleotide analogue. One of its advantages is its broad spectrum nature that renders the strategy potentially effective against emergent RNA viral infections. Here we describe synergistic lethal mutagenesis of hepatitis C virus (HCV) by a combination of favipiravir (T-705) and ribavirin. Synergy has been documented over a broad range of analogue concentrations using the Chou-Talalay method as implemented in the CompuSyn graphics, with average dose reduction index (DRI) above 1 (68.02±101.6 for favipiravir, and 5.83±6.07 for ribavirin), and average combination indices (CI) below 1 (0.52±0.28). Furthermore, analogue concentrations that individually did not extinguish high fitness HCV in ten serial infections, when used in combination they extinguished high fitness HCV in one to two passages. Although both analogues display a preference for G→A and C→U transitions, deep sequencing analysis of mutant spectra indicated a different preference of the two analogues for the mutation sites, thus unveiling a new possible synergy mechanism in lethal mutagenesis. Prospects of synergy among mutagenic nucleotides as a strategy to confront emerging viral infections are discussed.

13.
J Virol ; 92(20)2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30068642

RESUMO

Viral RNA-dependent RNA polymerases (RdRps) are major determinants of high mutation rates and generation of mutant spectra that mediate RNA virus adaptability. The RdRp of the picornavirus foot-and-mouth disease virus (FMDV), termed 3D, is a multifunctional protein that includes a nuclear localization signal (NLS) in its N-terminal region. Previous studies documented that some amino acid substitutions within the NLS altered nucleotide recognition and enhanced the incorporation of the mutagenic purine analogue ribavirin in viral RNA, but the mutants tested were not viable and their response to lethal mutagenesis could not be studied. Here we demonstrate that NLS amino acid substitution M16A of FMDV serotype C does not affect infectious virus production but accelerates ribavirin-mediated virus extinction. The mutant 3D displays polymerase activity, RNA binding, and copying processivity that are similar to those of the wild-type enzyme but shows increased ribavirin-triphosphate incorporation. Crystal structures of the mutant 3D in the apo and RNA-bound forms reveal an expansion of the template entry channel due to the replacement of the bulky Met by Ala. This is a major difference with other 3D mutants with altered nucleotide analogue recognition. Remarkably, two distinct loop ß9-α11 conformations distinguish 3Ds that exhibit higher or lower ribavirin incorporation than the wild-type enzyme. This difference identifies a specific molecular determinant of ribavirin sensitivity of FMDV. Comparison of several polymerase mutants indicates that different domains of the molecule can modify nucleotide recognition and response to lethal mutagenesis. The connection of this observation with current views on quasispecies adaptability is discussed.IMPORTANCE The nuclear localization signal (NLS) of the foot-and-mouth disease virus (FMDV) polymerase includes residues that modulate the sensitivity to mutagenic agents. Here we have described a viable NLS mutant with an amino acid replacement that facilitates virus extinction by ribavirin. The corresponding polymerase shows increased incorporation of ribavirin triphosphate and local structural modifications that implicate the template entry channel. Specifically, comparison of the structures of ribavirin-sensitive and ribavirin-resistant FMDV polymerases has identified loop ß9-α11 conformation as a determinant of sensitivity to ribavirin mutagenesis.


Assuntos
Vírus da Febre Aftosa/enzimologia , Mutagênese , RNA Polimerase Dependente de RNA/metabolismo , Substituição de Aminoácidos , Animais , Antivirais/metabolismo , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Sinais de Localização Nuclear , RNA Viral/biossíntese , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , Ribavirina/metabolismo
14.
J Gen Virol ; 99(1): 97-102, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29239718

RESUMO

Hepatitis C virus (HCV) is a highly divergent virus currently classified into seven major genotypes and 86 subtypes (ICTV, June 2017), which can have differing responses to therapy. Accurate genotyping/subtyping using high-resolution HCV subtyping enables confident subtype identification, identifies mixed infections and allows detection of new subtypes. During routine genotyping/subtyping, one sample from an Equatorial Guinea patient could not be classified into any of the subtypes. The complete genomic sequence was compared to reference sequences by phylogenetic and sliding window analysis. Resistance-associated substitutions (RASs) were assessed by deep sequencing. The unclassified HCV genome did not belong to any of the existing genotype 1 (G1) subtypes. Sliding window analysis along the complete genome ruled out recombination phenomena suggesting that it belongs to a new HCV G1 subtype. Two NS5A RASs (L31V+Y93H) were found to be naturally combined in the genome which could limit treatment possibilities in patients infected with this subtype.


Assuntos
Farmacorresistência Viral/genética , Genótipo , Hepacivirus/genética , Mutação , Filogenia , Proteínas não Estruturais Virais/genética , 2-Naftilamina , Anilidas/uso terapêutico , Antivirais/uso terapêutico , Benzimidazóis/uso terapêutico , Carbamatos/uso terapêutico , Guiné Equatorial , Feminino , Fluorenos/uso terapêutico , Expressão Gênica , Hepacivirus/classificação , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/patologia , Hepatite C/virologia , Humanos , Imidazóis/uso terapêutico , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Prolina , Pirrolidinas , Análise de Sequência de DNA , Sulfonamidas/uso terapêutico , Uracila/análogos & derivados , Uracila/uso terapêutico , Valina/análogos & derivados
15.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275194

RESUMO

Viral quasispecies evolution upon long-term virus replication in a noncoevolving cellular environment raises relevant general issues, such as the attainment of population equilibrium, compliance with the molecular-clock hypothesis, or stability of the phenotypic profile. Here, we evaluate the adaptation, mutant spectrum dynamics, and phenotypic diversification of hepatitis C virus (HCV) in the course of 200 passages in human hepatoma cells in an experimental design that precluded coevolution of the cells with the virus. Adaptation to the cells was evidenced by increase in progeny production. The rate of accumulation of mutations in the genomic consensus sequence deviated slightly from linearity, and mutant spectrum analyses revealed a complex dynamic of mutational waves, which was sustained beyond passage 100. The virus underwent several phenotypic changes, some of which impacted the virus-host relationship, such as enhanced cell killing, a shift toward higher virion density, and increased shutoff of host cell protein synthesis. Fluctuations in progeny production and failure to reach population equilibrium at the genomic level suggest internal instabilities that anticipate an unpredictable HCV evolution in the complex liver environment.IMPORTANCE Long-term virus evolution in an unperturbed cellular environment can reveal features of virus evolution that cannot be explained by comparing natural viral isolates. In the present study, we investigate genetic and phenotypic changes that occur upon prolonged passage of hepatitis C virus (HCV) in human hepatoma cells in an experimental design in which host cell evolutionary change is prevented. Despite replication in a noncoevolving cellular environment, the virus exhibited internal population disequilibria that did not decline with increased adaptation to the host cells. The diversification of phenotypic traits suggests that disequilibria inherent to viral populations may provide a selective advantage to viruses that can be fully exploited in changing environments.


Assuntos
Carcinoma Hepatocelular/virologia , Evolução Molecular , Hepacivirus/genética , Hepacivirus/fisiologia , Replicação Viral , Adaptação Biológica/genética , Replicação do DNA , Genoma Viral , Hepacivirus/classificação , Hepacivirus/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Fígado/virologia , Mutação , Fenótipo , RNA Viral/genética
16.
J Viral Hepat ; 25(12): 1515-1525, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30141252

RESUMO

The emergence of resistance-associated substitutions (RASs) can compromise the high efficacy of direct-acting antivirals (DAAs). Little is known about RASs selection at very early time points during DAA treatment. Therefore, we analyzed the potential emergence of RASs immediately after therapy initiation. Samples of 71 patients treated with different DAAs were collected at baseline, during therapy (hours 4 and 8; days 1-7; weeks 2-4) or until target not detected. HCV-RNA levels were determined by qPCR, and RASs were detected by deep sequencing. Sixty-three (89%) patients achieved a sustained virological response (SVR), 7 (10%) relapsed, and 1 (1%) experienced a breakthrough. Almost all non-SVR (7/8, 88%) showed RASs either at baseline or relapse. High-frequency RASs detected at baseline (Y93H and L159F+C316N) remained detectable at early time points during therapy and reappeared as most prevalent substitutions at relapse. Conversely, emergent RASs at relapse (Q80R, D168E/V, R155K and L31V) were not observed during the first hours-days, before HCV-RNA became undetectable. HCV-RNA decay and genetic evolution of the quasispecies followed a similar pattern during the first hours of therapy in SVR and non-SVR patients. In conclusion, the absence of early RASs selection and the similar dynamics of HCV kinetics and quasispecies in SVR and non-SVR patients after therapy initiation suggest that RASs selection may occur at later stages in the remaining reservoir, where viral populations persist hidden at very low replication levels. Nevertheless, we cannot completely exclude very early selection, when RASs are present below the sensitivity limit of deep sequencing.


Assuntos
Substituição de Aminoácidos , Antivirais/administração & dosagem , Farmacorresistência Viral , Hepacivirus/efeitos dos fármacos , Hepacivirus/isolamento & purificação , Hepatite C Crônica/tratamento farmacológico , Carga Viral , Adulto , Idoso , Idoso de 80 Anos ou mais , Antivirais/farmacologia , Feminino , Hepacivirus/genética , Hepatite C Crônica/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , RNA Viral/sangue , RNA Viral/genética , Reação em Cadeia da Polimerase em Tempo Real , Recidiva , Seleção Genética , Resposta Viral Sustentada
17.
BMC Infect Dis ; 18(1): 446, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176817

RESUMO

BACKGROUND: Despite the high sustained virological response rates achieved with current directly-acting antiviral agents (DAAs) against hepatitis C virus (HCV), around 5-10% of treated patients do not respond to current antiviral therapies, and basal resistance to DAAs is increasingly detected among treatment-naïve infected individuals. Identification of amino acid substitutions (including those in minority variants) associated with treatment failure requires analytical designs that take into account the high diversification of HCV in more than 86 subtypes according to the ICTV website (June 2017). METHODS: The methodology has involved five sequential steps: (i) to design 280 oligonucleotide primers (some including a maximum of three degenerate positions), and of which 120 were tested to amplify NS3, NS5A-, and NS5B-coding regions in a subtype-specific manner, (ii) to define a reference sequence for each subtype, (iii) to perform experimental controls to define a cut-off value for detection of minority amino acids, (iv) to establish bioinformatics' tools to quantify amino acid replacements, and (v) to validate the procedure with patient samples. RESULTS: A robust ultra-deep sequencing procedure to analyze HCV circulating in serum samples from patients infected with virus that belongs to the ten most prevalent subtypes worldwide: 1a, 1b, 2a, 2b, 2c, 2j, 3a, 4d, 4e, 4f has been developed. Oligonucleotide primers are subtype-specific. A cut-off value of 1% mutant frequency has been established for individual mutations and haplotypes. CONCLUSION: The methodological pipeline described here is adequate to characterize in-depth mutant spectra of HCV populations, and it provides a tool to understand HCV diversification and treatment failures. The pipeline can be periodically extended in the event of HCV diversification into new genotypes or subtypes, and provides a framework applicable to other RNA viral pathogens, with potential to couple detection of drug-resistant mutations with treatment planning.


Assuntos
Antivirais/uso terapêutico , Farmacorresistência Viral/genética , Hepacivirus/genética , Hepatite C/tratamento farmacológico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Virologia/métodos , Substituição de Aminoácidos , Bases de Dados Genéticas , Genótipo , Hepatite C/epidemiologia , Hepatite C/virologia , Humanos , Tipagem Molecular/métodos , Mutação , Medicina de Precisão , Prevalência , RNA Viral/genética , Falha de Tratamento , Proteínas não Estruturais Virais/genética
18.
J Virol ; 87(13): 7593-607, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23637397

RESUMO

Cell culture-produced hepatitis C virus (HCV) has been subjected to up to 100 serial passages in human hepatoma cells in the absence or presence of different doses of alpha interferon (IFN-α). Virus survival, genetic changes, fitness levels, and phenotypic traits have been examined. While high initial IFN-α doses (increasing from 1 to 4 IU/ml) did not allow HCV survival beyond passage 40, a gradual exposure (from 0.25 to 10 IU/ml) allowed the virus to survive for at least 100 passages. The virus passaged in the presence of IFN-α acquired IFN-α resistance as evidenced by enhanced progeny production and viral protein expression in an IFN-α environment. A partial IFN-α resistance was also noted in populations passaged in the absence of IFN-α. All lineages acquired adaptative mutations, and multiple, nonsynonymous mutations scattered throughout the genome were present in IFN-α-selected populations. Comparison of consensus sequences indicates a dominance of synonymous versus nonsynonymous substitutions. IFN-α-resistant populations displayed decreased sensitivity to a combination of IFN-α and ribavirin. A phenotypic trait common to all assayed viral populations is the ability to increase shutoff host cell protein synthesis, accentuated in infections with IFN-α-selected populations carried out in the presence of IFN-α. The trait was associated with enhanced phosphorylation of protein kinase R (PKR) and eIF2α, although other contributing factors are likely. The results suggest that multiple, independent mutational pathways can confer IFN-α resistance to HCV and might explain why no unified picture has been obtained regarding IFN-α resistance in vivo.


Assuntos
Adaptação Biológica/genética , Hepacivirus/genética , Interferon-alfa/farmacologia , Fenótipo , Sequência de Bases , Western Blotting , Linhagem Celular Tumoral , Primers do DNA/genética , Relação Dose-Resposta a Droga , Resistência a Medicamentos/genética , Hepacivirus/efeitos dos fármacos , Humanos , Dados de Sequência Molecular , Mutação/efeitos dos fármacos , Mutação/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Inoculações Seriadas/métodos
19.
Front Microbiol ; 15: 1358258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559344

RESUMO

Introduction: SARS-CoV-2 isolates of a given clade may contain low frequency genomes that encode amino acids or deletions which are typical of a different clade. Methods: Here we use high resolution ultra-deep sequencing to analyze SARS-CoV-2 mutant spectra. Results: In 6 out of 11 SARS-CoV-2 isolates from COVID-19 patients, the mutant spectrum of the spike (S)-coding region included two or more amino acids or deletions, that correspond to discordant viral clades. A similar observation is reported for laboratory populations of SARS-CoV-2 USA-WA1/2020, following a cell culture infection in the presence of remdesivir, ribavirin or their combinations. Moreover, some of the clade-discordant genome residues are found in the same haplotype within an amplicon. Discussion: We evaluate possible interpretations of these findings, and reviewed precedents for rapid selection of genomes with multiple mutations in RNA viruses. These considerations suggest that intra-host evolution may be sufficient to generate minority sequences which are closely related to sequences typical of other clades. The results provide a model for the origin of variants of concern during epidemic spread─in particular Omicron lineages─that does not require prolonged infection, involvement of immunocompromised individuals, or participation of intermediate, non-human hosts.

20.
Br J Pharmacol ; 181(15): 2636-2654, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38616133

RESUMO

BACKGROUND AND PURPOSE: There is a need for effective anti-COVID-19 treatments, mainly for individuals at risk of severe disease such as the elderly and the immunosuppressed. Drug repositioning has proved effective in identifying drugs that can find a new application for the control of coronavirus disease, in particular COVID-19. The purpose of the present study was to find synergistic antiviral combinations for COVID-19 based on lethal mutagenesis. EXPERIMENTAL APPROACH: The effect of combinations of remdesivir and ribavirin on the infectivity of SARS-CoV-2 in cell culture has been tested. Viral populations were monitored by ultra-deep sequencing, and the decrease of infectivity as a result of the treatment was measured. KEY RESULTS: Remdesivir and ribavirin exerted a synergistic inhibitory activity against SARS-CoV-2, quantified both by CompuSyn (Chou-Talalay method) and Synergy Finder (ZIP-score model). In serial passage experiments, virus extinction was readily achieved with remdesivir-ribavirin combinations at concentrations well below their cytotoxic 50 value, but not with the drugs used individually. Deep sequencing of treated viral populations showed that remdesivir, ribavirin, and their combinations evoked significant increases of the number of viral mutations and haplotypes, as well as modification of diversity indices that characterize viral quasi-species. CONCLUSION AND IMPLICATIONS: SARS-CoV-2 extinction can be achieved by synergistic combination treatments based on lethal mutagenesis. In addition, the results offer prospects of triple drug treatments for effective SARS-CoV-2 suppression.


Assuntos
Monofosfato de Adenosina , Alanina , Antivirais , Sinergismo Farmacológico , Ribavirina , SARS-CoV-2 , Alanina/análogos & derivados , Alanina/farmacologia , Ribavirina/farmacologia , Antivirais/farmacologia , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Chlorocebus aethiops , Células Vero , Animais , Humanos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa