Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Harmful Algae ; 131: 102560, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212084

RESUMO

Along the Italian coasts, toxins of algal origin in wild and cultivated shellfish have been reported since the 1970s. In this study, we used data gathered by the Veterinary Public Health Institutes (IZS) and the Italian Environmental Health Protection Agencies (ARPA) from 2006 to 2019 to investigate toxicity events along the Italian coasts and relate them to the distribution of potentially toxic species. Among the detected toxins (OA and analogs, YTXs, PTXs, STXs, DAs, AZAs), OA and YTX were those most frequently reported. Levels exceeding regulatory limits in the case of OA (≤2,448 µg equivalent kg-1) were associated with high abundances of Dinophysis spp., and in the case of YTXs (≤22 mg equivalent kg-1) with blooms of Gonyaulax spinifera, Lingulodinium polyedra, and Protoceratium reticulatum. Seasonal blooms of Pseudo-nitzschia spp. occur all along the Italian coast, but DA has only occasionally been detected in shellfish at concentrations always below the regulatory limit (≤18 mg kg-1). Alexandrium spp. were recorded in several areas, although STXs (≤13,782 µg equivalent kg-1) rarely and only in few sites exceeded the regulatory limit in shellfish. Azadinium spp. have been sporadically recorded, and AZAs have been sometimes detected but always in low concentrations (≤7 µg equivalent kg-1). Among the emerging toxins, PLTX-like toxins (≤971 µg kg-1 OVTX-a) have often been detected mainly in wild mussels and sea urchins from rocky shores due to the presence of Ostreopsis cf. ovata. Overall, Italian coastal waters harbour a high number of potentially toxic species, with a few HAB hotspots mainly related to DSP toxins. Nevertheless, rare cases of intoxications have occurred so far, reflecting the whole Mediterranean Sea conditions.


Assuntos
Bivalves , Dinoflagellida , Animais , Toxinas Marinhas , Frutos do Mar/análise , Alimentos Marinhos/análise , Saxitoxina , Itália
2.
Foods ; 11(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36429277

RESUMO

Fish is one of the major food allergens which, in sensitised individuals, can cause life-threatening allergic reactions, even when present in small amounts. To protect consumers' health, the correct labeling of foods is important. The objective of the present study was to validate an in-house real-time PCR method targeting the ribosomal 18S rRNA gene as universal DNA marker for the detection of fish in foods. The specificity of the primers was assessed on 20 fish species commonly marketed in the Mediterranean basin and other species of molluscs and crustaceans and foods of animal and plant origin. The absolute detection of the method was assessed using DNA extracted from a fish mixture and the SureFood® QUANTARD Allergen 40 reference material. The relative amount was assessed on a fish and béchamel sauce blend. Commercial food samples either labelled with or without fish in the ingredient list, were tested for the presence of fish DNA. The primer showed high specificity against the selected fish species. The limit of detection (LOD) and limit of quantification (LOQ) of the in-house method were 0.5 pg/µL and 5 pg/µL, respectively. The relative quantification in fish and béchamel blend samples detected a concentration as low as 0.000025%, corresponding to 0.25 mg/kg of fish, indicating the suitability of the method in a food matrix. The presence of fish DNA was always detected in commercial samples in which the presence of fish was listed in the ingredient list. The method was able to detect the presence of fish DNA also in samples in which the presence of fish was indicated as traces or was not declared on the label. The proposed method was demonstrated to be a reliable, specific, and sensitive method for the detection of fish allergens in foods. Therefore, the proposed real-time PCR method could be used as a useful instrument in the verification of compliance with allergen labelling regulations.

3.
Ital J Food Saf ; 11(1): 9973, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35284336

RESUMO

The aims of this paper were to collect and analyse preliminary data of phytoplankton in the water, biotoxins, Escherichia coli, Salmonella spp., Vibrio spp. and microplastic eventually present in farmed mussels, and to acquire information about the production capability from an experimental pilot farm of the Calich Lagoon. Two sampling sessions were carried out, in February and in May 2019, also monitoring the water condition (pH, temperature, salinity, dissolved oxygen, chlorophyll a). No potentially toxic algae were detected, and moreover no biotoxins (Paralytic Shellfish Poison, Diarrheic Shellfish Poison, Amnesic Shellfish Poison) were found in mussels. E.coli was present with the highest concentration in February (16000 MPN/100g e.p.). Salmonella and Vibrio spp. have not been detected. Almost a microplastic per grams was found, mainly fiber of different colours. Further studies, carried out for several months, will allow to better understand the possible problems related to the production of mussels in a lagoon not yet classified as a shellfish production area.

4.
Ital J Food Saf ; 10(1): 8947, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33907685

RESUMO

In Sardinia (Italy), bivalve molluscs production plays an important role in the trade balance. Diarrhoetic shellfish poisoning (DSP), an intoxication caused by the ingestion of bivalve molluscs that have accumulated high levels of Okadaic acid (OA), may represent a serious risk for the public health and a remarkable economic loss for the producers. Aim of this work was to improve knowledge about the repeatability of OA accumulation phenomena in various seasons trying to understand whether or not there was a trend. Also, the interaction between toxic algae and OA accumulation was examined. In this study, data of lipophilic toxins, water temperature and abundance of DSP-producing microalgal species were collected in a four-year period (2015-2018) in coastal production areas of Sardinia. Several episodes of OA positive values (>160 eq µgAO/Kg pe, Reg 853/04) were recorded during the study period in different production areas of Sardinia and in different seasons. A seasonal repeatability of OA accumulation in molluscs was observed in some production areas; moreover, different temporal gaps between the presence of toxic algae and OA accumulation were reported. Toxicity was observed almost exclusively in Mytilus galloprovincialis Lamark (99%), being this matrix the most abundant species bred in Sardinia.

5.
Ital J Food Saf ; 10(2): 9281, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34268143

RESUMO

Several planktonic dinoflagellates can produce lipophilic phycotoxins that represent a significant threat to public health as well as to shellfish and fish farming. Poisoning related to some of these toxins is categorised as diarrhetic shellfish poisoning. We analysed 975 shellfish samples from Tortoli in the central-eastern region of Sardinia (Italy) from January 2016 to March 2020, to investigate the prevalence of different lipophilic marine biotoxins in mollusc bivalves. The results highlighted the predominant presence of toxins belonging to the okadaic acid group in all samples with toxin concentrations exceeding legal limits, and revealed the new occurrence of pectenotoxins in oysters and clams with a winter seasonality in recent years. The origin of shellfish toxicity was associated with the same Dinophysis species, mainly D. acuminata. Based on both these results and other precedents, monitoring and recording systems are strongly recommended.

6.
Ital J Food Saf ; 7(4): 7264, 2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30854336

RESUMO

Fish is one of fourteen allergens that must be highlighted on the label within the ingredients list. The European regulation is very restrictive to allergens with zero tolerance. Therefore, it is important to establish sensitive and specific methods for detecting fish allergen. Applicability to detect and quantify fish allergen by droplet digital polymerase chain reaction (ddPCR) has been evaluated in this work. Genomic DNA of three species belonging to the most common fish families were analyzed. PCR primers were designed to amplify a 166 bp region of the 18S rRNA gene. Comparative studies were performed to establish the optimal primer and probe concentrations. Annealing temperature was determined by using thermal gradient. The results have shown good applicability of the optimized 18S rRNA gene-method to detect and quantify small amounts of the target in samples analyzed. However, validation studies are needed in order to apply ddPCR technology for routine allergens analysis.

7.
J Vet Res ; 62(2): 137-144, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30364879

RESUMO

INTRODUCTION: Diarrhoetic shellfish poisoning (DSP), an alimentary intoxication known to lead to intestinal symptoms, and caused by toxins produced by some dinoflagellates (including several Dinophysis), represents a serious threat to public health. The aim of this paper was to provide information about the occurrence and abundance of potentially toxic harmful algal species causing DSP, and the associated concentration of okadaic acid (OA) toxins. The departing assumption was that in the study area there was an increase in the presence both of Dinophysis species and OA and its derivates that could result in a risk to the health of seafood consumers. MATERIAL AND METHODS: During 2015-2016, water and shellfish samples were collected in the Mediterranean area (Sardinia, Italy). Dinophysis cells were counted according to Utermöhl's method from water samples, while mass spectrometry was used to identify lipophilic toxins in molluscs. RESULTS: A total of 46 non-compliant samples of Mytilus galloprovincialis were observed. Their non-compliance concerned their OA levels above the legal limit. Among toxic dinoflagellates, D. acuminata and D. sacculus were the species found mostly during DSP events. CONCLUSION: No cases of human intoxication have been reported, but continuous surveillance of toxic phytoplankton is necessary to predict and prevent its harmful effects on human health.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa