Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Mol Ther ; 26(9): 2243-2254, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30017877

RESUMO

Lymphodepleting preconditioning with high-dose chemotherapy is commonly used to increase the clinical efficacy of adoptive T cell therapy (ACT) strategies, however, with severe toxicity for patients. Conversely, oncolytic adenoviruses are safe and, when engineered to express interleukin-2 (IL-2) and tumor necrosis factor alpha (TNF-α), they can achieve antitumor immunomodulatory effects similar to lymphodepletion. Therefore, we compare the safety and efficacy of such adenoviruses with a cyclophosphamide- and fludarabine-containing lymphodepleting regimen in the setting of ACT. Human adenovirus (Ad5/3-E2F-D24-hTNF-α-IRES-hIL-2; TILT-123) replication was studied using a Syrian hamster pancreatic tumor model (HapT1) infused with tumor-infiltrating lymphocytes (TILs). Using the oncolytic virus instead of lymphodepletion resulted in superior efficacy and survival. Immune cells responsive to TNF-α IL-2 were studied using an immunocompetent mouse melanoma model (B16.OVA) infused with ovalbumin-specific T (OT-I) cells. Here, the adenovirus approach improved tumor control together with increased intratumoral Th1 cytokine levels and infiltration of CD8+ T cells and CD86+ dendritic cells. Similar to humans, lymphodepleting preconditioning caused severe cytopenias, systemic inflammation, and damage to vital organs. Toxicity was minimal in adenovirus- and OT-I-treated mice. These findings demonstrate that ACT can be effectively facilitated by cytokine-coding adenovirus without requiring lymphodepletion, a rationale being clinically investigated.


Assuntos
Interleucina-2/uso terapêutico , Fator de Necrose Tumoral alfa/uso terapêutico , Adenoviridae/genética , Animais , Linhagem Celular , Modelos Animais de Doenças , Vetores Genéticos/genética , Humanos , Imunoterapia Adotiva/métodos , Masculino , Melanoma/imunologia , Melanoma/terapia , Mesocricetus , Camundongos , Linfócitos T/metabolismo , Linfócitos T/fisiologia
2.
Int J Cancer ; 141(7): 1458-1468, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28614908

RESUMO

Systemic high dose interleukin-2 (IL-2) postconditioning has long been utilized in boosting the efficacy of T cells in adoptive cell therapy (ACT) of solid tumors. The resulting severe off-target toxicity of these regimens renders local production at the tumor an attractive concept with possible safety gains. We evaluated the efficacy and safety of intratumorally administered IL-2-coding adenoviruses in combination with tumor-infiltrating lymphocyte therapy in syngeneic Syrian hamsters bearing HapT1 pancreatic tumors and with T cell receptor transgenic ACT in B16.OVA melanoma bearing C57BL/6 mice. The models are complementary: hamsters are semi-permissive for human oncolytic adenovirus, whereas detailed immunological analyses are possible in mice. In both models, local production of IL-2 successfully replaced the need for systemic recombinant IL-2 (rIL-2) administration and increased the efficacy of the cell therapy. Furthermore, vectored delivery of IL-2 significantly enhanced the infiltration of CD8+ T cells, M1-like macrophages, and B-cells while systemic rIL-2 increased CD25 + FoxP3+ T cells at the tumor. In contrast with vectored delivery, histopathological analysis of systemic rIL-2-treated animals revealed significant changes in lungs, livers, hearts, spleens, and kidneys. In summary, local IL-2 production results in efficacy and safety gains in the context of ACT. These preclinical assessments provide the rationale for ongoing clinical translation.


Assuntos
Adenoviridae/metabolismo , Imunoterapia Adotiva/métodos , Interleucina-2/biossíntese , Linfócitos do Interstício Tumoral/imunologia , Melanoma Experimental/terapia , Neoplasias Pancreáticas/terapia , Adenoviridae/imunologia , Transferência Adotiva/métodos , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/imunologia , Cricetinae , Modelos Animais de Doenças , Feminino , Fatores de Transcrição Forkhead/imunologia , Vetores Genéticos , Mediadores da Inflamação/sangue , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Pulmão/irrigação sanguínea , Pulmão/patologia , Linfócitos do Interstício Tumoral/transplante , Macrófagos/imunologia , Masculino , Melanoma Experimental/imunologia , Mesocricetus , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/imunologia , Distribuição Aleatória , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia
3.
Clin Cancer Res ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546220

RESUMO

PURPOSE: TILT-123 (igrelimogene litadenorepvec) is an oncolytic adenovirus armed with tumor necrosis factor alpha and interleukin-2, designed to induce T-cell infiltration and cytotoxicity in solid tumors. PATIENTS AND METHODS: TUNIMO (NCT04695327) was a single-arm, multicenter phase I dose escalation trial designed to assess safety of TILT-123 in advanced solid cancers refractory to standard therapy. Patients received intravenous and intratumoral TILT-123. The primary endpoint was safety by adverse events (AEs), laboratory values, vital signs, and electrocardiograms. Secondary endpoints included tumor response, pharmacokinetics, and predictive biomarkers. RESULTS: 20 patients were enrolled, with median age of 58 years. Most prevalent cancer types included sarcomas (35%), melanomas (15%) and ovarian cancers (15%). No dose-limiting toxicities were observed. The most frequent treatment related AEs included fever (16.7%), chills (13.0%) and fatigue (9.3%). 10 patients were evaluable for response on day 78 with RECIST 1.1, iRECIST or PET-based evaluation. The disease control rate by PET was 6/10 (60% of evaluable patients) and 2/10 by RECIST 1.1 and iRECIST (20% of evaluable patients). Tumor size reductions occurred in both injected and non-injected lesions. TILT-123 was detected in injected and non-injected tumors, and virus was observed in blood after intravenous and intratumoral injections. Treatment resulted in reduction of lymphocytes in blood, with concurrent lymphocyte increases in tumors, findings compatible with trafficking. CONCLUSIONS: TILT-123 was safe and able to produce anti-tumor effects in local and distant lesions in heavily pre-treated patients. Good tolerability of TILT-123 facilitates combination studies, several of which are ongoing (NCT04217473, NCT05271318, NCT05222932, NCT06125197).

4.
Mol Ther Oncolytics ; 28: 59-73, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36699617

RESUMO

Immunotherapy with bispecific T cell engagers has shown efficacy in patients with hematologic malignancies and uveal melanoma. Antitumor effects of bispecific T cell engagers in most solid tumors are limited due to their short serum half-life and insufficient tumor concentration. We designed a novel serotype 5/3 oncolytic adenovirus encoding a human mucin1 antibody and the human CD3 receptor, Ad5/3-E2F-d24-aMUC1aCD3 (TILT-321). TILT-321 is engineered to replicate only in cancer cells, leading to a high concentration of the aMUC1aCD3 molecule in the tumor microenvironment. Infection and cell viability assays were performed to determine the oncolytic potential of the novel construct. The functionality of the virus-derived aMUC1aCD3 was evaluated in vitro. When TILT-321 was combined with allogeneic T cells, rapid tumor cell lysis was observed. TILT-321-infected cells secreted functional aMUC1aCD3, as shown by increased T cell activity and its binding to MUC1 and CD3. In vivo, TILT-321 treatment led to effective antitumor efficacy mediated by increased intratumoral T cell activity in an A549 and patient-derived ovarian cancer xenograft mouse model humanized with peripheral blood mononuclear cells (PBMC). This study provides a proof of concept for an effective strategy to overcome the key limitations of recombinant bispecific T cell engager delivery for solid tumor treatment.

5.
Front Immunol ; 14: 1060540, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36817448

RESUMO

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123). Methods: Recombinant Syrian hamster PD-L1 was expressed and mice immunized for mAb formation using hybridoma technology. Clonal selection through binding and functional studies in vitro, in silico and in vivo identified anti-PD-L1 clone 11B12-1 as the primary mAb candidate for immunotherapy modelling. The oncolytic virus (OV) and ICI combination approach was then evaluated using 11B12-1 and TILT-123 in a Syrian hamster model of pancreatic ductal adenocarcinoma (PDAC). Results: Supernatants from hybridoma parent subclone 11B12B4 provided the highest positive PD-L1 signal, on Syrian hamster PBMCs and three cancer cell lines (HT100, HapT1 and HCPC1). In vitro co-cultures revealed superior immune modulated profiles of cell line matched HT100 tumour infiltrating lymphocytes when using subclones of 7G2, 11B12 and 12F1. Epitope binning and epitope prediction using AlphaFold2 and ColabFold revealed two distinct functional epitopes for clone 11B12-1 and 12F1-1. Treatment of Syrian hamsters bearing HapT1 tumours, with 11B12-1 induced significantly better (p<0.05) tumour growth control than isotype control by day 12. 12F1-1 did not induce significant tumour growth control. The combination of 11B12-1 with oncolytic adenovirus TILT-123 improved tumour growth control further, when compared to monotherapy (p<0.05) by day 26. Conclusions: Novel Syrian hamster anti-PD-L1 clone 11B12-1 induces tumour growth control in a hamster model of PDAC. Combining 11B12-1 with oncolytic adenovirus TILT-123 improves tumour growth control further and demonstrates good safety and toxicity profiles.


Assuntos
Carcinoma Ductal Pancreático , Vírus Oncolíticos , Neoplasias Pancreáticas , Cricetinae , Animais , Camundongos , Mesocricetus , Inibidores de Checkpoint Imunológico , Adenoviridae , Neoplasias Pancreáticas/terapia , Imunoterapia , Anticorpos Monoclonais , Replicação Viral , Neoplasias Pancreáticas
6.
Oncoimmunology ; 12(1): 2241710, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546696

RESUMO

Lung cancer remains among the most difficult-to-treat malignancies and is the leading cause of cancer-related deaths worldwide. The introduction of targeted therapies and checkpoint inhibitors has improved treatment outcomes; however, most patients with advanced-stage non-small cell lung cancer (NSCLC) eventually fail these therapies. Therefore, there is a major unmet clinical need for checkpoint refractory/resistant NSCLC. Here, we tested the combination of aPD-1 and adenovirus armed with TNFα and IL-2 (Ad5-CMV-mTNFα/mIL-2) in an immunocompetent murine NSCLC model. Moreover, although local delivery has been standard for virotherapy, treatment was administered intravenously to facilitate clinical translation and putative routine use. We showed that treatment of tumor-bearing animals with aPD-1 in combination with intravenously injected armed adenovirus significantly decreased cancer growth, even in the presence of neutralizing antibodies. We observed an increased frequency of cytotoxic tumor-infiltrating lymphocytes, including tumor-specific cells. Combination treatment led to a decreased percentage of immunosuppressive tumor-associated macrophages and an improvement in dendritic cell maturation. Moreover, we observed expansion of the tumor-specific memory T cell compartment in secondary lymphoid organs in the group that received aPD-1 with the virus. However, although the non-replicative Ad5-CMV-mTNFα/mIL-2 virus allows high transgene expression in the murine model, it does not fully reflect the clinical outcome in humans. Thus, we complemented our findings using NSCLC ex vivo models fully permissive for the TNFα and IL-2- armed oncolytic adenovirus TILT-123. Overall, our data demonstrate the ability of systemically administered adenovirus armed with TNFα and IL-2 to potentiate the anti-tumor efficacy of aPD-1 and warrant further investigation in clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Interleucina-2 , Neoplasias Pulmonares , Fator de Necrose Tumoral alfa , Animais , Humanos , Camundongos , Adenoviridae/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Interleucina-2/genética , Interleucina-2/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/uso terapêutico , Inibidores de Checkpoint Imunológico
7.
Duodecim ; 128(20): 2166-75, 2012.
Artigo em Finlandês | MEDLINE | ID: mdl-23167174

RESUMO

While there is seldom need for most anti-poisoning agents and antidotes, they should be quickly available, when needed. Local worst-case scenarios, regional staggering of the treatment, and distances must be taken into account at the health care unit level. Hospitals are fairly well equipped with the recommended antidotes. Replenishment of the stocks is complicated by continual disruptions in supply of antidotes. New antidotes in the updated recommendation include calcium folinate (leucovorin) for methanol poisoning and octreotide for the treatment of hypoglycemia caused by intoxications resulting from antidiabetics of the sulfonyl urea group.


Assuntos
Antídotos/economia , Antídotos/provisão & distribuição , Intoxicação/tratamento farmacológico , Humanos , Leucovorina/economia , Leucovorina/provisão & distribuição , Octreotida/economia , Octreotida/provisão & distribuição
8.
Front Immunol ; 13: 794251, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35355980

RESUMO

Immune checkpoint inhibitors (ICI) have provided significant improvement in clinical outcomes for some patients with solid tumors. However, for patients with head and neck cancer, the response rate to ICI monotherapy remains low, leading to the exploration of combinatorial treatment strategies. In this preclinical study, we use an oncolytic adenovirus (Ad5/3) encoding hTNFα and hIL-2 and non-replicate adenoviruses (Ad5) encoding mTNFα and mIL-2 with ICI to achieve superior tumor growth control and improved survival outcomes. The in vitro effect of Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 was characterized through analyses of virus replication, transgene expression and lytic activity using head and neck cancer patient derived cell lines. Mouse models of ICI naïve and refractory oral cavity squamous cell carcinoma were established to evaluate the local and systemic anti-tumor immune response upon ICI treatment with or without the non-replicative adenovirus encoding mTNFα and mIL-2. We delineated the mechanism of action by measuring the metabolic activity and effector function of CD3+ tumor infiltrating lymphocytes (TIL) and transcriptomic profile of the CD45+ tumor immune compartment. Ad5/3-E2F-D24-hTNFa-IRES-hIL-2 demonstrated robust replicative capability in vitro across all head and neck cell lines screened through potent lytic activity, E1a and transgene expression. In vivo, in both ICI naïve and refractory models, we observed improvement to tumor growth control and long-term survival when combining anti-PD-1 or anti-PD-L1 with the non-replicative adenovirus encoding mTNFα and mIL-2 compared to monotherapies. This observation was verified by striking CD3+ TIL derived mGranzyme b and interferon gamma production complemented by increased T cell bioenergetics. Notably, interrogation of the tumor immune transcriptome revealed the upregulation of a gene signature distinctive of tertiary lymphoid structure formation upon treatment of murine anti-PD-L1 refractory tumors with non-replicative adenovirus encoding mTNFα and mIL-2. In addition, we detected an increase in anti-tumor antibody production and expansion of the memory T cell compartment in the secondary lymphoid organs. In summary, a non-replicative adenovirus encoding mTNFα and mIL-2 potentiates ICI therapy, demonstrated by improved tumor growth control and survival in head and neck tumor-bearing mice. Moreover, the data reveals a potential approach for inducing tertiary lymphoid structure formation. Altogether our results support the clinical potential of combining this adenovirotherapy with anti-PD-1 or anti-PD-L1.


Assuntos
Neoplasias de Cabeça e Pescoço , Terapia Viral Oncolítica , Estruturas Linfoides Terciárias , Adenoviridae/genética , Animais , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-2/genética , Camundongos , Terapia Viral Oncolítica/métodos , Fator de Necrose Tumoral alfa/genética
9.
Cells ; 10(2)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513935

RESUMO

Oncolytic viruses provide a biologically multi-faceted treatment option for patients who cannot be cured with currently available treatment options. We constructed an oncolytic adenovirus, TILT-123, to support T-cell therapies and immune checkpoint inhibitors in solid tumors. Adenoviruses are immunogenic by nature, are easy to produce in large quantities, and can carry relatively large transgenes. They are the most commonly used gene therapy vectors and are well tolerated in patients. TILT-123 expresses two potent cytokines, tumor necrosis factor alpha and interleukin-2, to stimulate especially the T-cell compartment in the tumor microenvironment. Before entering clinical studies, the safety and biodistribution of TILT-123 was studied in Syrian hamsters and in mice. The results show that TILT-123 is safe in animals as monotherapy and in combination with an immune checkpoint inhibitor anti-PD-1. The virus treatment induces acute changes in circulating immune cell compartments, but the levels return to normal by the middle of the treatment period. The virus is rapidly cleared from healthy tissues, and it does not cause damage to vital organs. The results support the initiation of a phase 1 dose-escalation trial, where melanoma patients receiving a tumor-infiltrating lymphocyte therapy are treated with TILT-123 (NCT04217473).


Assuntos
Adenoviridae/metabolismo , Citocinas/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Vírus Oncolíticos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Animais , Anticorpos Neutralizantes/metabolismo , Linhagem Celular Tumoral , Cricetinae , Feminino , Injeções , Masculino , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Especificidade de Órgãos , Receptor de Morte Celular Programada 1/metabolismo , Distribuição Tecidual , Transgenes , Replicação Viral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Gene Ther ; 28(5): 442-454, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32920593

RESUMO

Oncolytic adenoviruses are promising cancer therapeutic agents. Clinical data have shown adenoviruses' ability to transduce tumors after systemic delivery in human cancer patients, despite antibodies. In the present work, we have focused on the interaction of a chimeric adenovirus Ad5/3 with human lymphocytes and human erythrocytes. Ad5/3 binding with human lymphocytes and erythrocytes was observed to occur in a reversible manner, which allowed viral transduction of tumors, and oncolytic potency of Ad5/3 in vitro and in vivo, with or without neutralizing antibodies. Immunodeficient mice bearing xenograft tumors showed enhanced tumor transduction following systemic administration, when Ad5/3 virus was bound to lymphocytes or erythrocytes (P < 0.05). In conclusion, our findings reveal that chimeric Ad5/3 adenovirus reaches non-injected tumors in the presence of neutralizing antibodies: it occurs through reversible binding to lymphocytes and erythrocytes.


Assuntos
Adenocarcinoma de Pulmão/terapia , Adenoviridae/genética , Anticorpos Neutralizantes/imunologia , Eritrócitos/metabolismo , Neoplasias Pulmonares/terapia , Linfócitos/metabolismo , Terapia Viral Oncolítica/métodos , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenoviridae/classificação , Adenoviridae/metabolismo , Animais , Anticorpos Neutralizantes/metabolismo , Apoptose , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos SCID , Transdução Genética , Células Tumorais Cultivadas , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Front Immunol ; 12: 706517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367166

RESUMO

Immune checkpoint inhibitors such as anti-PD-1 have revolutionized the field of oncology over the past decade. Nevertheless, the majority of patients do not benefit from them. Virotherapy is a flexible tool that can be used to stimulate and/or recruit different immune populations. T-cell enabling virotherapy could enhance the efficacy of immune checkpoint inhibitors, even in tumors resistant to these inhibitors. The T-cell potentiating virotherapy used here consisted of adenoviruses engineered to express tumor necrosis factor alpha and interleukin-2 in the tumor microenvironment. To study virus efficacy in checkpoint-inhibitor resistant tumors, we developed an anti-PD-1 resistant melanoma model in vivo. In resistant tumors, adding virotherapy to an anti-PD-1 regimen resulted in increased survival (p=0.0009), when compared to anti-PD-1 monotherapy. Some of the animals receiving virotherapy displayed complete responses, which did not occur in the immune checkpoint-inhibitor monotherapy group. When adenoviruses were delivered into resistant tumors, there were signs of increased CD8 T-cell infiltration and activation, which - together with a reduced presence of M2 macrophages and myeloid-derived suppressor cells - could explain those results. T-cell enabling virotherapy appeared as a valuable tool to counter resistance to immune checkpoint inhibitors. The clinical translation of this approach could increase the number of cancer patients benefiting from immunotherapies.


Assuntos
Inibidores de Checkpoint Imunológico/farmacologia , Interleucina-2/imunologia , Melanoma Experimental/patologia , Terapia Viral Oncolítica/métodos , Fator de Necrose Tumoral alfa/imunologia , Adenoviridae , Animais , Resistencia a Medicamentos Antineoplásicos , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/antagonistas & inibidores
12.
Oncoimmunology ; 9(1): 1761229, 2020 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-32923123

RESUMO

Checkpoint inhibitors have revolutionized cancer therapy and validated immunotherapy as an approach. Unfortunately, responses are seen in a minority of patients. Our objective is to use engineered adenoviruses designed to increase lymphocyte trafficking and cytokine production at the tumor, to assess if they increase the response rate to checkpoint inhibition, as these features have been regarded as predictive for the responses. When Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (an oncolytic adenovirus coding for TNFa and IL-2, also known as TILT-123) and checkpoint inhibitors were used together in fresh urological tumor histocultures, a significant shift toward immune activity (not only tumor necrosis alpha and interleukin-2 but also interferon gamma and granzyme B) and increased T-cell trafficking signals (CXCL10) was observed. In vivo, our viruses enabled an anti-PD-L1 (a checkpoint inhibitor) delivering complete responses in all the treated animals (hazard ratios versus anti-PD-L1 alone 0.057 [0.007; 0.451] or virotherapy alone 0.067 [0.011; 0.415]). To conclude, when an engineered oncolytic adenovirus was utilized to modify the tumor microenvironment towards what meta-analyses have pointed as predictive markers for checkpoint inhibitory therapy, the response to them increased synergistically. Of note, key findings were confirmed in fresh patient-derived tumor explants.


Assuntos
Terapia Viral Oncolítica , Vírus Oncolíticos , Adenoviridae/genética , Animais , Antígeno B7-H1/genética , Humanos , Vírus Oncolíticos/genética , Microambiente Tumoral
13.
Mol Ther Oncolytics ; 17: 47-60, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32322662

RESUMO

Despite some promising results, the majority of patients do not benefit from T cell therapies, as tumors prevent T cells from entering the tumor, shut down their activity, or downregulate key antigens. Due to their nature and mechanism of action, oncolytic viruses have features that can help overcome many of the barriers currently facing T cell therapies of solid tumors. This study aims to understand how four different oncolytic viruses (adenovirus, vaccinia virus, herpes simplex virus, and reovirus) perform in that task. For that purpose, an immunocompetent in vivo tumor model featuring adoptive tumor-infiltrating lymphocyte (TIL) therapy was used. Tumor growth control (p < 0.001) and survival analyses suggest that adenovirus was most effective in enabling T cell therapy. The complete response rate was 62% for TILs + adenovirus versus 17.5% for TILs + PBS. Of note, TIL biodistribution did not explain efficacy differences between viruses. Instead, immunostimulatory shifts in the tumor microenvironment mirrored efficacy results. Overall, the use of oncolytic viruses can improve the utility of T cell therapies, and additional virus engineering by arming with transgenes can provide further antitumor effects. This phenomenon was seen when an unarmed oncolytic adenovirus was compared to Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123). A clinical trial is ongoing, where patients receiving TIL treatment also receive TILT-123 (ClinicalTrials.gov: NCT04217473).

14.
Hum Gene Ther ; 30(6): 740-752, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30672366

RESUMO

After the discovery and characterization of the adenovirus in the 1950s, this prevalent cause of the common cold and other usually mild diseases has been modified and utilized in biomedicine in several ways. To date, adenoviruses are the most frequently used vectors and therapeutic (e.g., oncolytic) agents with a number of beneficial features. They infect both dividing and nondividing cells, enable high-level, transient protein expression, and are easy to amplify to high concentrations. As an important and versatile research tool, it is of essence to understand the limits and advantages that genetic modification of adenovirus vectors may entail. Therefore, a retrospective analysis was performed of adenoviral gene therapy constructs produced in the same laboratory with similar methods. The aim was to assess the impact of various modifications on the physical and functional titer of the virus. It was found that genome size (designed within "the 105% golden rule") did not significantly affect the physical titer of the adenovirus preparations, regardless of the type of transgene (e.g., immunostimulatory vs. other), number of engineered changes, and size of the mutated virus genome. One statistically significant exception was noted, however. Chimeric adenoviruses (5/3) had a slightly lower physical titer compared to Ad5-based viruses, although a trend for the opposite was true for functional titers. Thus, 5/3 chimeric viruses may in fact be appealing from a safety versus efficacy viewpoint. Armed viruses had lower functional and physical titers than unarmed viruses, while five genomic modifications started to decrease functional titer. Importantly, even highly modified armed viruses generally had good titers compatible with clinical testing. In summary, this paper shows the plasticity of adenovirus for various vector, oncolytic, and armed oncolytic uses. These results inform future generations of adenovirus-based drugs for human use. This information is directly transferable to academic laboratories and the biomedical industry involved in vector design and production optimization.


Assuntos
Adenoviridae/genética , Terapia Genética , Vetores Genéticos/genética , Neoplasias/genética , Neoplasias/terapia , Adenoviridae/classificação , Animais , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética/métodos , Tamanho do Genoma , Humanos , Camundongos , Neoplasias/patologia , Transdução Genética , Transgenes
15.
Oncoimmunology ; 7(10): e1490856, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386680

RESUMO

Dendritic cells (DCs) are crucial players in promoting immune responses. Logically, adoptive DC therapy is a promising approach in cancer immunotherapy. One of the major obstacles in cancer immunotherapy in general is the immunosuppressive tumor microenvironment, which hampers the maturation and activation of DCs. Therefore, human clinical outcomes with DC therapy alone have been disappointing. In this study, we use fully serotype 3 oncolytic adenovirus Ad3-hTERT-CMV-hCD40L, expressing human CD40L, to modulate the tumor microenvironment with subsequently improved function of DCs. We evaluated the synergistic effects of Ad3-hTERT-CMV-hCD40L and DCs in the presence of human peripheral blood mononuclear cells ex vivo and in vivo. Tumors treated with Ad3-hTERT-CMV-hCD40L and DCs featured greater antitumor effect compared with unarmed virus or either treatment alone. 100% of humanized mice survived to the end of the experiment, while mice in all other groups died by day 88. Moreover, adenovirally-delivered CD40L induced activation of DCs, leading to induction of Th1 immune responses. These results support clinical trials with Ad3-hTERT-CMV-hCD40L in patients receiving DC therapy.

16.
Mol Ther Oncolytics ; 11: 109-121, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30569015

RESUMO

Cancer treatment with local administration of armed oncolytic viruses could potentially induce systemic antitumor effects, or the abscopal effect, as they self-amplify in tumors, induce danger signaling, and promote tumor-associated antigen presentation. In this study, oncolytic adenovirus coding for human tumor necrosis factor alpha (TNF-α) and interleukin-2 (IL-2) Ad5/3-E2F-d24-hTNF-α-IRES-hIL-2 (also known as [a.k.a.] TILT-123) provoked antitumor efficacy in tumors that were injected with Ad5/3-E2F-d24-hTNF-α-IRES-hIL-2 and those that were left non-injected in the same animal. Importantly, the virus was able to travel to distant tumors. To dissect the effects of oncolysis and cytokines, we studied replication-incompetent viruses in mice. Systemic antitumor effects were similar in both models, highlighting the importance of the arming device. The cytokines induced positive changes in immune cell infiltrates and induced the expression of several immune-reaction-related genes in tumors. In addition, Ad5/3-E2F-d24-hTNF-α-IRES-hIL-2 was able to increase homing of adoptively transferred tumor-infiltrating lymphocytes into both injected and non-injected tumors, possibly mediated through chemokine expression. In summary, local treatment with Ad5/3-E2F-d24-hTNF-α-IRES-hIL-2 resulted in systemic antitumor efficacy by inducing immune cell infiltration and trafficking into both treated and untreated tumors. Moreover, the oncolytic adenovirus platform had superior systemic effects over replication-deficient vector through spreading into distant tumors.

17.
JCI Insight ; 3(7)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29618658

RESUMO

Pancreatic ductal adenocarcinoma (PDA) is characterized by its highly immunosuppressive tumor microenvironment (TME) that limits T cell infiltration and induces T cell hypofunction. Mesothelin-redirected chimeric antigen receptor T cell (meso-CAR T cell) therapy has shown some efficacy in clinical trials but antitumor efficacy remains modest. We hypothesized that combined meso-CAR T cells with an oncolytic adenovirus expressing TNF-α and IL-2 (Ad5/3-E2F-D24-TNFa-IRES-IL2, or OAd-TNFa-IL2) would improve efficacy. OAd-TNFa-IL2 enhanced the antitumor efficacy of meso-CAR T cells in human-PDA-xenograft immunodeficient mice and efficacy was associated with robustly increased tumor-infiltrating lymphocytes (TILs), enhanced and prolonged T cell function. Mice treated with parental OAd combined with meso-CAR T developed tumor metastasis to the lungs even if primary tumors were controlled. However, no mice treated with combined OAd-TNFa-IL2 and meso-CAR T died of tumor metastasis. We also evaluated this approach in a syngeneic mouse tumor model by combining adenovirus expressing murine TNF-α and IL-2 (Ad-mTNFa-mIL2) and mouse CAR T cells. This approach induced significant tumor regression in mice engrafted with highly aggressive and immunosuppressive PDA tumors. Ad-mTNFa-mIL2 increased both CAR T cell and host T cell infiltration to the tumor and altered host tumor immune status with M1 polarization of macrophages and increased dendritic cell maturation. These findings indicate that combining cytokine-armed oncolytic adenovirus to enhance the efficacy of CAR T cell therapy is a promising approach to overcome the immunosuppressive TME for the treatment of PDA.


Assuntos
Carcinoma Ductal Pancreático/terapia , Proteínas Ligadas por GPI/imunologia , Imunoterapia Adotiva/métodos , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Adenoviridae/imunologia , Animais , Carcinoma Ductal Pancreático/imunologia , Linhagem Celular Tumoral , Terapia Combinada/métodos , Humanos , Linfócitos do Interstício Tumoral/imunologia , Mesotelina , Camundongos , Vírus Oncolíticos/imunologia , Neoplasias Pancreáticas/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/transplante , Microambiente Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Ther Oncolytics ; 4: 77-86, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-28345026

RESUMO

Adoptive cell therapy holds much promise in the treatment of cancer but results in solid tumors have been modest. The notable exception is tumor-infiltrating lymphocyte (TIL) therapy of melanoma, but this approach only works with high-dose preconditioning chemotherapy and systemic interleukin (IL)-2 postconditioning, both of which are associated with toxicities. To improve and broaden the applicability of adoptive cell transfer, we constructed oncolytic adenoviruses coding for human IL-2 (hIL2), tumor necrosis factor alpha (TNF-α), or both. The viruses showed potent antitumor efficacy against human tumors in immunocompromised severe combined immunodeficiency (SCID) mice. In immunocompetent Syrian hamsters, we combined the viruses with TIL transfer and were able to cure 100% of the animals. Cured animals were protected against tumor re-challenge, indicating a memory response. Arming with IL-2 and TNF-α increased the frequency of both CD4+ and CD8+ TILs in vivo and augmented splenocyte proliferation ex vivo, suggesting that the cytokines were important for T cell persistence and proliferation. Cytokine expression was limited to tumors and treatment-related signs of systemic toxicity were absent, suggesting safety. To conclude, cytokine-armed oncolytic adenoviruses enhanced adoptive cell therapy by favorable alteration of the tumor microenvironment. A clinical trial is in progress to study the utility of Ad5/3-E2F-d24-hTNFa-IRES-hIL2 (TILT-123) in human patients with cancer.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa