Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Infect Dis ; 221(4): 578-588, 2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-31562500

RESUMO

BACKGROUND: Chronic norovirus infection in immunocompromised patients can be severe, and presently there is no effective treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the treatment of many viral infections, and this could represent a novel treatment approach for chronic norovirus infection. Hence, we sought to generate human norovirus-specific T cells (NSTs) that can recognize different viral sequences. METHODS: Norovirus-specific T cells were generated from peripheral blood of healthy donors by stimulation with overlapping peptide libraries spanning the entire coding sequence of the norovirus genome. RESULTS: We successfully generated T cells targeting multiple norovirus antigens with a mean 4.2 ± 0.5-fold expansion after 10 days. Norovirus-specific T cells comprised both CD4+ and CD8+ T cells that expressed markers for central memory and effector memory phenotype with minimal expression of coinhibitory molecules, and they were polyfunctional based on cytokine production. We identified novel CD4- and CD8-restricted immunodominant epitopes within NS6 and VP1 antigens. Furthermore, NSTs showed a high degree of cross-reactivity to multiple variant epitopes from clinical isolates. CONCLUSIONS: Our findings identify immunodominant human norovirus T-cell epitopes and demonstrate that it is feasible to generate potent NSTs from third-party donors for use in antiviral immunotherapy.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Infecções por Caliciviridae/terapia , Reações Cruzadas/imunologia , Norovirus/imunologia , Doadores de Tecidos , Sequência de Aminoácidos , Antígenos Virais/imunologia , Infecções por Caliciviridae/virologia , Técnicas de Cultura de Células/métodos , Células Cultivadas , Epitopos de Linfócito T/imunologia , Estudos de Viabilidade , Voluntários Saudáveis , Humanos , Hospedeiro Imunocomprometido , Epitopos Imunodominantes/imunologia , Norovirus/genética
2.
J Immunol ; 200(12): 4157-4169, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29735480

RESUMO

Murine norovirus (NoV) is genetically similar to human NoV and offers both an efficient in vitro cell culture system and an animal model by which to investigate the molecular basis of replication. In this study, we present a detailed global view of host alterations to cellular pathways that occur during the progression of a NoV infection. This was accomplished for both Mus musculus BALB/c-derived RAW264.7 (RAW) cells, an immortalized cell line widely used in in vitro replication studies, and primary bone marrow-derived macrophages (BMDM), representing a permissive in vivo target cell in the host. Murine NoV replicated in both cell types, although detected genome copies were approximately one log lower in BMDM compared with RAW cells. RAW and BMDM cells shared an IRF3/7-based IFN response that occurred early in infection. In RAW cells, transcriptional upregulation and INF-ß expression were not coupled in that a significant delay in the detection of secreted INF-ß was observed. In contrast, primary BMDM showed an early upregulation of transcripts and immediate release of INF-ß that might account for lower virus yield. Differences in the transcriptional pathway responses included a marked decrease in expression of key genes in the cell cycle and lipid pathways in RAW cells compared with that of BMDM. Our comparative analysis indicates the existence of varying host responses to virus infection in populations of permissive cells. Awareness of these differences at the gene level will be important in the application of a given permissive culture system to the study of NoV immunity, pathogenesis, and drug development.


Assuntos
Infecções por Caliciviridae/genética , Macrófagos/virologia , Transcriptoma/genética , Animais , Infecções por Caliciviridae/virologia , Ciclo Celular/genética , Linhagem Celular , Replicação do DNA/genética , Fator Regulador 3 de Interferon/genética , Fator Regulador 7 de Interferon/genética , Interferon beta/genética , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Células RAW 264.7 , Transcrição Gênica/genética
3.
PLoS Pathog ; 13(1): e1006136, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28103318

RESUMO

Noroviruses are major pathogens associated with acute gastroenteritis worldwide. Their RNA genomes are diverse, with two major genogroups (GI and GII) comprised of at least 28 genotypes associated with human disease. To elucidate mechanisms underlying norovirus diversity and evolution, we used a large-scale genomics approach to analyze human norovirus sequences. Comparison of over 2000 nearly full-length ORF2 sequences representing most of the known GI and GII genotypes infecting humans showed a limited number (≤5) of distinct intra-genotypic variants within each genotype, with the exception of GII.4. The non-GII.4 genotypes were comprised of one or more intra-genotypic variants, with each variant containing strains that differed by only a few residues over several decades (remaining "static") and that have co-circulated with no clear epidemiologic pattern. In contrast, the GII.4 genotype presented the largest number of variants (>10) that have evolved over time with a clear pattern of periodic variant replacement. To expand our understanding of these two patterns of diversification ("static" versus "evolving"), we analyzed using NGS the nearly full-length norovirus genome in healthy individuals infected with GII.4, GII.6 or GII.17 viruses in different outbreak settings. The GII.4 viruses accumulated mutations rapidly within and between hosts, while the GII.6 and GII.17 viruses remained relatively stable, consistent with their diversification patterns. Further analysis of genetic relationships and natural history patterns identified groupings of certain genotypes into larger related clusters designated here as "immunotypes". We propose that "immunotypes" and their evolutionary patterns influence the prevalence of a particular norovirus genotype in the human population.


Assuntos
Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/genética , Infecções por Caliciviridae/imunologia , Norovirus/genética , Evolução Molecular , Genômica , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Epidemiologia Molecular
4.
Mol Cell Proteomics ; 16(4 suppl 1): S215-S229, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28087593

RESUMO

Noroviruses produce viral RNAs lacking a 5' cap structure and instead use a virus-encoded viral protein genome-linked (VPg) protein covalently linked to viral RNA to interact with translation initiation factors and drive viral protein synthesis. Norovirus infection results in the induction of the innate response leading to interferon stimulated gene (ISG) transcription. However, the translation of the induced ISG mRNAs is suppressed. A SILAC-based mass spectrometry approach was employed to analyze changes to protein abundance in both whole cell and m7GTP-enriched samples to demonstrate that diminished host mRNA translation correlates with changes to the composition of the eukaryotic initiation factor complex. The suppression of host ISG translation correlates with the activity of the viral protease (NS6) and the activation of cellular caspases leading to the establishment of an apoptotic environment. These results indicate that noroviruses exploit the differences between viral VPg-dependent and cellular cap-dependent translation in order to diminish the host response to infection.


Assuntos
Infecções por Caliciviridae/genética , Norovirus/metabolismo , Proteômica/métodos , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas Virais/metabolismo , Apoptose , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Marcação por Isótopo/métodos , Espectrometria de Massas/métodos , Norovirus/genética , RNA Viral/metabolismo
5.
Clin Immunol ; 197: 139-153, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240602

RESUMO

Common variable immunodeficiency (CVID), the most common symptomatic primary antibody deficiency, is accompanied in some patients by a duodenal inflammation and malabsorption syndrome known as CVID enteropathy (E-CVID).The goal of this study was to investigate the immunological abnormalities in CVID patients that lead to enteropathy as well as the contribution of intestinal microbiota to this process.We found that, in contrast to noE-CVID patients (without enteropathy), E-CVID patients have exceedingly low levels of IgA in duodenal tissues. In addition, using transkingdom network analysis of the duodenal microbiome, we identified Acinetobacter baumannii as a candidate pathobiont in E-CVID. Finally, we found that E-CVID patients exhibit a pronounced activation of immune genes and down-regulation of epithelial lipid metabolism genes. We conclude that in the virtual absence of mucosal IgA, pathobionts such as A. baumannii, may induce inflammation that re-directs intestinal molecular pathways from lipid metabolism to immune processes responsible for enteropathy.


Assuntos
Imunodeficiência de Variável Comum/imunologia , Duodenite/imunologia , Microbioma Gastrointestinal/imunologia , Imunidade nas Mucosas/imunologia , Imunoglobulina A/imunologia , Interferons/imunologia , Síndromes de Malabsorção/imunologia , Acinetobacter baumannii , Imunodeficiência de Variável Comum/complicações , Regulação para Baixo , Duodenite/etiologia , Duodenite/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Expressão Gênica , Humanos , Inflamação , Metabolismo dos Lipídeos/genética , Síndromes de Malabsorção/etiologia , Síndromes de Malabsorção/microbiologia , Masculino , RNA Bacteriano/genética , RNA Ribossômico 16S/genética
6.
J Virol ; 91(3)2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881660

RESUMO

Norovirus (NoV) infections are a significant health burden to society, yet the lack of reliable tissue culture systems has hampered the development of appropriate antiviral therapies. Here we show that the NoV NS3 protein, derived from murine NoV (MNV), is intimately associated with the MNV replication complex and the viral replication intermediate double-stranded RNA (dsRNA). We observed that when expressed individually, MNV NS3 and NS3 encoded by human Norwalk virus (NV) induced the formation of distinct vesicle-like structures that did not colocalize with any particular protein markers to cellular organelles but localized to cellular membranes, in particular those with a high cholesterol content. Both proteins also showed some degree of colocalization with the cytoskeleton marker ß-tubulin. Although the distribution of MNV and NV NS3s were similar, NV NS3 displayed a higher level of colocalization with the Golgi apparatus and the endoplasmic reticulum (ER). However, we observed that although both proteins colocalized in membranes counterstained with filipin, an indicator of cholesterol content, MNV NS3 displayed a greater association with flotillin and stomatin, proteins known to associate with sphingolipid- and cholesterol-rich microdomains. Utilizing time-lapse epifluorescence microscopy, we observed that the membrane-derived vesicular structures induced by MNV NS3 were highly motile and dynamic in nature, and their movement was dependent on intact microtubules. These results begin to interrogate the functions of NoV proteins during virus replication and highlight the conserved properties of the NoV NS3 proteins among the seven Norovirus genogroups. IMPORTANCE: Many mechanisms involved in the replication of norovirus still remain unclear, including the role for the NS3 protein, one of seven nonstructural viral proteins, which remains to be elucidated. This study reveals that murine norovirus (MNV) NS3 is intimately associated with the viral replication complex and dsRNA. We observed that the NS3 proteins of both MNV and Norwalk virus (NV) induce prominent vesicular structures and that this formation is dependent on microtubules and cellular cholesterol. Thus, this study contributes to our understanding of protein function within different Norovirus genogroups and expands a growing knowledge base on the interaction between positive-strand RNA [(+)RNA] viruses and cellular membranes that contribute to the biogenesis of virus-induced membrane organelles. This study contributes to our understanding of viral protein function and the ability of a viral protein to recruit specific cellular organelles and lipids that enable replication.


Assuntos
Infecções por Caliciviridae/metabolismo , Infecções por Caliciviridae/virologia , Metabolismo dos Lipídeos , Microtúbulos/metabolismo , Norovirus/fisiologia , Proteínas não Estruturais Virais/metabolismo , Replicação Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Chlorocebus aethiops , Colesterol/metabolismo , Interações Hospedeiro-Patógeno , Espaço Intracelular , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Ligação Proteica , Transporte Proteico , RNA de Cadeia Dupla/metabolismo , RNA Viral/metabolismo , Células Vero , Proteínas não Estruturais Virais/química
7.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28468886

RESUMO

The emergence of pandemic GII.4 norovirus (NoV) strains has been proposed to occur due to changes in receptor usage and thereby to lead to immune evasion. To address this hypothesis, we measured the ability of human sera collected between 1979 and 2010 to block glycan binding of four pandemic GII.4 noroviruses isolated in the last 4 decades. In total, 268 sera were investigated for 50% blocking titer (BT50) values of virus-like particles (VLPs) against pig gastric mucin (PGM) using 4 VLPs that represent different GII.4 norovirus variants identified between 1987 and 2012. Pre- and postpandemic sera (sera collected before and after isolation of the reference NoV strain) efficiently prevented binding of VLP strains MD145 (1987), Grimsby (1995), and Houston (2002), but not the Sydney (2012) strain, to PGM. No statistically significant difference in virus-blocking titers was observed between pre- and postpandemic sera. Moreover, paired sera showed that blocking titers of ≥160 were maintained over a 6-year period against MD145, Grimsby, and Houston VLPs. Significantly higher serum blocking titers (geometric mean titer [GMT], 1,704) were found among IgA-deficient individuals than among healthy blood donors (GMT, 90.9) (P < 0.0001). The observation that prepandemic sera possess robust blocking capacity for viruses identified decades later suggests a common attachment factor, at least until 2002. Our results indicate that serum IgG possesses antibody-blocking capacity and that blocking titers can be maintained for at least 6 years against 3 decades of pandemic GII.4 NoV.IMPORTANCE Human noroviruses (NoVs) are the major cause of acute gastroenteritis worldwide. Histo-blood group antigens (HBGAs) in saliva and gut recognize NoV and are the proposed ligands that facilitate infection. Polymorphisms in HBGA genes, and in particular a nonsense mutation in FUT2 (G428A), result in resistance to global dominating GII.4 NoV. The emergence of new pandemic GII.4 strains occurs at intervals of several years and is proposed to be attributable to epochal evolution, including amino acid changes and immune evasion. However, it remains unclear whether exposure to a previous pandemic strain stimulates immunity to a pandemic strain identified decades later. We found that prepandemic sera possess robust virus-blocking capacity against viruses identified several decades later. We also show that serum lacking IgA antibodies is sufficient to block NoV VLP binding to HBGAs. This is essential, considering that 1 in every 600 Caucasian children is IgA deficient.


Assuntos
Anticorpos Bloqueadores/sangue , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/virologia , Mucinas/metabolismo , Norovirus/imunologia , Norovirus/fisiologia , Ligação Viral , Adulto , Idoso , Genótipo , Humanos , Pessoa de Meia-Idade , Norovirus/classificação , Norovirus/genética
8.
J Virol ; 87(6): 3003-17, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23269802

RESUMO

Open reading frame 2 (ORF2) of the feline calicivirus (FCV) genome encodes a capsid precursor that is posttranslationally processed to release the mature capsid protein (VP1) and a small protein of 124 amino acids, designated the leader of the capsid (LC). To investigate the role of the LC protein in the virus life cycle, mutations and deletions were introduced into the LC coding region of an infectious FCV cDNA clone. Three cysteine residues that are conserved among all vesivirus LC sequences were found to be critical for the recovery of FCV with a characteristic cytopathic effect in feline kidney cells. A cell-rounding phenotype associated with the transient expression of wild-type and mutagenized forms of the LC correlated with the cytopathic and growth properties of the corresponding engineered viruses. The host cellular protein annexin A2 was identified as a binding partner of the LC protein, consistent with a role for the LC in mediating host cell interactions that alter the integrity of the cell and enable virus spread.


Assuntos
Calicivirus Felino/patogenicidade , Proteínas do Capsídeo/metabolismo , Efeito Citopatogênico Viral , Fatores de Virulência/metabolismo , Animais , Anexina A2/metabolismo , Proteínas do Capsídeo/genética , Gatos , Linhagem Celular , Interações Hospedeiro-Patógeno , Mutação Puntual , Ligação Proteica , Processamento de Proteína Pós-Traducional , Deleção de Sequência , Fatores de Virulência/genética
9.
J Virol ; 87(17): 9547-57, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23785216

RESUMO

Passive immunoprophylaxis or immunotherapy with norovirus-neutralizing monoclonal antibodies (MAbs) could be a useful treatment for high-risk populations, including infants and young children, the elderly, and certain patients who are debilitated or immunocompromised. In order to obtain antinorovirus MAbs with therapeutic potential, we stimulated a strong adaptive immune response in chimpanzees to the prototype norovirus strain Norwalk virus (NV) (genogroup I.1). A combinatorial phage Fab display library derived from mRNA of the chimpanzees' bone marrow was prepared, and four distinct Fabs reactive with Norwalk recombinant virus-like particles (rVLPs) were recovered, with estimated binding affinities in the subnanomolar range. Mapping studies showed that the four Fabs recognized three different conformational epitopes in the protruding (P) domain of NV VP1, the major capsid protein. The epitope of one of the Fabs, G4, was further mapped to a specific site involving a key amino acid residue, Gly365. One additional specific Fab (F11) was recovered months later from immortalized memory B cells and partially characterized. The anti-NV Fabs were converted into full-length IgG (MAbs) with human γ1 heavy chain constant regions. The anti-NV MAbs were tested in the two available surrogate assays for Norwalk virus neutralization, which showed that the MAbs could block carbohydrate binding and inhibit hemagglutination by NV rVLP. By mixing a single MAb with live Norwalk virus prior to challenge, MAbs D8 and B7 neutralized the virus and prevented infection in a chimpanzee. Because chimpanzee immunoglobulins are virtually identical to human immunoglobulins, these chimpanzee anticapsid MAbs may have a clinical application.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Infecções por Caliciviridae/terapia , Gastroenterite/terapia , Vírus Norwalk/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/isolamento & purificação , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/isolamento & purificação , Especificidade de Anticorpos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Mapeamento de Epitopos , Gastroenterite/imunologia , Gastroenterite/prevenção & controle , Humanos , Imunização Passiva , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/isolamento & purificação , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Pan troglodytes , Biblioteca de Peptídeos , Conformação Proteica , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Proteínas Estruturais Virais/química , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia
10.
J Virol ; 87(10): 5318-30, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487472

RESUMO

We report the solution structures of the VPg proteins from feline calicivirus (FCV) and murine norovirus (MNV), which have been determined by nuclear magnetic resonance spectroscopy. In both cases, the core of the protein adopts a compact helical structure flanked by flexible N and C termini. Remarkably, while the core of FCV VPg contains a well-defined three-helix bundle, the MNV VPg core has just the first two of these secondary structure elements. In both cases, the VPg cores are stabilized by networks of hydrophobic and salt bridge interactions. The Tyr residue in VPg that is nucleotidylated by the viral NS7 polymerase (Y24 in FCV, Y26 in MNV) occurs in a conserved position within the first helix of the core. Intriguingly, given its structure, VPg would appear to be unable to bind to the viral polymerase so as to place this Tyr in the active site without a major conformation change to VPg or the polymerase. However, mutations that destabilized the VPg core either had no effect on or reduced both the ability of the protein to be nucleotidylated and virus infectivity and did not reveal a clear structure-activity relationship. The precise role of the calicivirus VPg core in virus replication remains to be determined, but knowledge of its structure will facilitate future investigations.


Assuntos
Calicivirus Felino/química , Norovirus/química , Proteínas Virais/química , Animais , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica
11.
Virus Genes ; 48(1): 96-110, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24217871

RESUMO

Feline calicivirus (FCV) is a common cause of mild to severe upper respiratory tract disease (URTD) in cats. FCV strain 21223 was isolated from a kitten with severe pneumonia in a disease outbreak with unusually high mortality (35 %) that occurred in a Missouri feline colony in 1995-1996. Phylogenetic analysis of the genome sequence of strain 21223 indicated the emergence of a new FCV strain. Analysis of the full-length genome sequence of a closely related (99.5 % nucleotide identity) strain, 3786, obtained from an asymptomatic animal in the same colony four months later, showed the presence of seven amino acid substitutions, with six of them located in the VP1 capsid sequence encoded by ORF2. Comparative analysis of the E-region sequences (426-521 aa ORF2) presumably involved in virus-host cell receptor interactions did not identify amino acid substitutions unique to the virulent strain. We determined the complete genome sequences of four virus isolates that were collected in regional catteries in the months following the outbreak that were associated with different manifestations of the disease (URTD, chronic stomatitis, and gingivitis). We show that genetically distinct FCV strains were cocirculating in the area, and no apparent correlation could be made between overall sequence and observed disease.


Assuntos
Infecções por Caliciviridae/veterinária , Calicivirus Felino/classificação , Calicivirus Felino/genética , Doenças do Gato/patologia , Doenças do Gato/virologia , Animais , Doenças Assintomáticas , Infecções por Caliciviridae/patologia , Infecções por Caliciviridae/virologia , Calicivirus Felino/isolamento & purificação , Proteínas do Capsídeo/genética , Gatos , Análise por Conglomerados , Surtos de Doenças , Genoma Viral , Missouri/epidemiologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência
12.
Proc Natl Acad Sci U S A ; 108(1): 325-30, 2011 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-21173246

RESUMO

Noroviruses are global agents of acute gastroenteritis, but the development of control strategies has been hampered by the absence of a robust animal model. Studies in chimpanzees have played a key role in the characterization of several fastidious hepatitis viruses, and we investigated the feasibility of such studies for the noroviruses. Seronegative chimpanzees inoculated i.v. with the human norovirus strain Norwalk virus (NV) did not show clinical signs of gastroenteritis, but the onset and duration of virus shedding in stool and serum antibody responses were similar to that observed in humans. NV RNA was detected in intestinal and liver biopsies concurrent with the detection of viral shedding in stool, and NV antigen expression was observed in cells of the small intestinal lamina propria. Two infected chimpanzees rechallenged 4, 10, or 24 mo later with NV were resistant to reinfection, and the presence of NV-specific serum antibodies correlated with protection. We evaluated the immunogenicity and efficacy of virus-like particles (VLPs) derived from NV (genogroup I, GI) and MD145 (genogroup II, GII) noroviruses as vaccines. Chimpanzees vaccinated intramuscularly with GI VLPs were protected from NV infection when challenged 2 and 18 mo after vaccination, whereas chimpanzees that received GII VLPs vaccine or a placebo were not. This study establishes the chimpanzee as a viable animal model for the study of norovirus replication and immunity, and shows that NV VLP vaccines could induce protective homologous immunity even after extended periods of time.


Assuntos
Modelos Animais de Doenças , Gastroenterite/prevenção & controle , Vírus Norwalk/genética , Pan troglodytes , Vacinas de Partículas Semelhantes a Vírus/imunologia , Vacinas Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Sequência de Bases , Imunofluorescência , Gastroenterite/imunologia , Gastroenterite/virologia , Humanos , Imuno-Histoquímica , Injeções Intramusculares , Intestino Delgado/virologia , Dados de Sequência Molecular , Mucosa/virologia , Análise de Sequência de DNA , Fatores de Tempo , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas Virais/administração & dosagem
13.
Nat Microbiol ; 9(3): 776-786, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38321182

RESUMO

Norovirus infection can cause gastrointestinal disease in humans. Development of therapies and vaccines against norovirus have been limited by the lack of a suitable and reliable animal model. Here we established rhesus macaques as an animal model for human norovirus infection. We show that rhesus macaques are susceptible to oral infection with human noroviruses from two different genogroups. Variation in duration of virus shedding (days to weeks) between animals, evolution of the virus over the time of infection, induction of virus-specific adaptive immune responses, susceptibility to reinfection and preferential replication of norovirus in the jejunum of rhesus macaques was similar to infection reported in humans. We found minor pathological signs and changes in epithelial cell surface glycosylation patterns in the small intestine during infection. Detection of viral protein and RNA in intestinal biopsies confirmed the presence of the virus in chromogranin A-expressing epithelial cells, as it does in humans. Thus, rhesus macaques are a promising non-human primate model to evaluate vaccines and therapeutics against norovirus disease.


Assuntos
Infecções por Caliciviridae , Norovirus , Vacinas , Humanos , Animais , Macaca mulatta , Intestino Delgado
14.
J Virol ; 86(13): 7414-26, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532688

RESUMO

Noroviruses are major etiological agents of acute viral gastroenteritis. In 2002, a GII.4 variant (Farmington Hills cluster) spread so rapidly in the human population that it predominated worldwide and displaced previous GII.4 strains. We developed and characterized a panel of six monoclonal antibodies (MAbs) directed against the capsid protein of a Farmington Hills-like GII.4 norovirus strain that was associated with a large hospital outbreak in Maryland in 2004. The six MAbs reacted with high titers against homologous virus-like particles (VLPs) by enzyme-linked immunoassay but did not react with denatured capsid protein in immunoblots. The expression and self-assembly of newly developed genogroup I/II chimeric VLPs showed that five MAbs bound to the GII.4 protruding (P) domain of the capsid protein, while one recognized the GII.4 shell (S) domain. Cross-competition assays and mutational analyses showed evidence for at least three distinct antigenic sites in the P domain and one in the S domain. MAbs that mapped to the P domain but not the S domain were able to block the interaction of VLPs with ABH histo-blood group antigens (HBGA), suggesting that multiple antigenic sites of the P domain are involved in HBGA blocking. Further analysis showed that two MAbs mapped to regions of the capsid that had been associated with the emergence of new GII.4 variants. Taken together, our data map antibody and HBGA carbohydrate binding to proximal regions of the norovirus capsid, showing that evolutionary pressures on the norovirus capsid protein may affect both antigenic and carbohydrate recognition phenotypes.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Infecções por Caliciviridae/virologia , Proteínas do Capsídeo/metabolismo , Norovirus/patogenicidade , Mapeamento de Interação de Proteínas , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Infecções por Caliciviridae/epidemiologia , Proteínas do Capsídeo/genética , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Genótipo , Humanos , Maryland/epidemiologia , Camundongos , Camundongos Endogâmicos BALB C , Norovirus/genética , Norovirus/isolamento & purificação , Ligação Proteica
15.
mBio ; : e0217723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905910

RESUMO

Noroviruses are a major cause of acute gastroenteritis worldwide and can establish chronic infection in immunocompromised individuals. To investigate the mechanisms of norovirus evolution during chronic infection, we selected seven representative patients from a National Institutes of Health study cohort who sustained norovirus infection for periods ranging from 73 to 1,492 days. Six patients shed viruses belonging to a single genotype (GII.2[PNA], GII.4 New Orleans[P4], GII.4 Den Haag[P4], GII.3[P21], GII.6[P7], or GII.14[P7]) over the period examined, while one patient sequentially shed two genotypes (GII.6[P7] followed by GII.4 Sydney[P31]). Norovirus genomes from consecutive stool samples were sequenced at high resolution (>3,300 reads/nucleotide position) using the Illumina platform and subjected to bioinformatics analysis. Norovirus sequences could be resolved into one or more discrete clonal RNA genomes that persisted within these patients over time. Phylogenetic analyses inferred that clonal populations originated from a single founder virus and not by reinfection with community strains. Estimated evolutionary rates of clonal populations during persistent infection were similar to those of noroviruses from acute infection in the global database, suggesting that inherently higher RNA-dependent polymerase error rates were not associated with the ability to persist. The high-resolution analysis of norovirus diversity and evolution at the population level described here should allow a better understanding of adaptive mutations sustained during chronic infection. IMPORTANCE Noroviruses are an important cause of chronic diarrhea in patients with compromised immune systems. Presently, there are no effective therapies to clear the virus, which can persist for years in the intestinal tract. The goal of our study was to develop a better understanding of the norovirus strains that are associated with these long-term infections. With the remarkable diversity of norovirus strains detected in the immunocompromised patient cohort we studied, it appears that most, if not all, noroviruses circulating in nature may have the capacity to establish a chronic infection when a person is unable to mount an effective immune response. Our work is the most comprehensive genetic data set generated to date in which near full-length genomes from noroviruses associated with chronic infection were analyzed by high-resolution next-generation sequencing. Analysis of this data set led to our discovery that certain patients in our cohort were shedding noroviruses that could be subdivided into distinct haplotypes or populations of viruses that were co-evolving independently. The ability to track haplotypes of noroviruses during chronic infection will allow us to fine-tune our understanding of how the virus adapts and maintains itself in the human host, and how selective pressures such as antiviral drugs can affect these distinct populations.

16.
Nat Commun ; 14(1): 6516, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845211

RESUMO

Acute gastroenteritis caused by human noroviruses (HuNoVs) is a significant global health and economic burden and is without licensed vaccines or antiviral drugs. The GII.4 HuNoV causes most epidemics worldwide. This virus undergoes epochal evolution with periodic emergence of variants with new antigenic profiles and altered specificity for histo-blood group antigens (HBGA), the determinants of cell attachment and susceptibility, hampering the development of immunotherapeutics. Here, we show that a llama-derived nanobody M4 neutralizes multiple GII.4 variants with high potency in human intestinal enteroids. The crystal structure of M4 complexed with the protruding domain of the GII.4 capsid protein VP1 revealed a conserved epitope, away from the HBGA binding site, fully accessible only when VP1 transitions to a "raised" conformation in the capsid. Together with dynamic light scattering and electron microscopy of the GII.4 VLPs, our studies suggest a mechanism in which M4 accesses the epitope by altering the conformational dynamics of the capsid and triggering its disassembly to neutralize GII.4 infection.


Assuntos
Antígenos de Grupos Sanguíneos , Infecções por Caliciviridae , Norovirus , Humanos , Proteínas do Capsídeo/química , Capsídeo/metabolismo , Norovirus/genética , Sítios de Ligação , Epitopos/metabolismo , Antígenos de Grupos Sanguíneos/metabolismo
17.
Virol J ; 9: 297, 2012 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-23190937

RESUMO

BACKGROUND: Vesiviruses in the family Caliciviridae infect a broad range of animal hosts including mammals, birds, fish, amphibians and reptiles. The vesivirus Cro1 strains were isolated from diseased snakes in the San Diego zoo in 1978 and reported as the first caliciviruses found in reptiles. The goal of this study was to characterize the Cro1 strain 780032I that was isolated in cell culture from a rock rattlesnake (Crotalus lepidus) in the original outbreak. RESULTS: We re-amplified the original virus stock in Vero cells, and determined its full-length genome sequence. The Cro1 genome is 8296 nucleotides (nt) in length and has a typical vesivirus organization, with three open reading frames (ORF), ORF1 (5643 nt), ORF2 (2121 nt), and ORF3 (348 nt) encoding a nonstructural polyprotein, the major capsid protein precursor, and a minor structural protein, respectively. Phylogenetic analysis of the full-length genome sequence revealed that the Cro1 virus clustered most closely with the VESV species of the genus Vesivirus, but was genetically distinct (82-83% identities with closest strains). CONCLUSIONS: This is the first description of a full-length genome sequence from a reptile calicivirus (Cro1). The availability of the Cro1 genome sequence should facilitate investigation of the molecular mechanisms involved in Cro1 virus evolution and host range.


Assuntos
Infecções por Caliciviridae/veterinária , Crotalus/virologia , Surtos de Doenças , Genoma Viral , RNA Viral/genética , Análise de Sequência de DNA , Vesivirus/genética , Animais , Animais de Zoológico , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/virologia , California , Chlorocebus aethiops , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , Homologia de Sequência do Ácido Nucleico , Células Vero , Vesivirus/isolamento & purificação , Cultura de Vírus
18.
J Virol Methods ; 297: 114196, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34019938

RESUMO

BACKGROUND: Noroviruses are the most common cause of viral gastroenteritis worldwide, yet there is a deficit in the understanding of protective immunity. Surrogate neutralization assays have been widely used that measure the ability of antibodies to block virus-like particle (VLP) binding to histo-blood group antigens (HBGAs). However, screening large sample sets against multiple antigens using the traditional HBGA blocking assay requires significant investment in terms of time, equipment, and technical expertise, largely associated with the generation of purified VLPs. METHODS: To address these issues, a luciferase immunoprecipitation system (LIPS) assay was modified to measure the norovirus-specific HBGA blockade activity of antibodies. The assay (designated LIPS-Blockade) was validated using a panel of well-characterized homotypic and heterotypic hyperimmune sera as well as strain-specific HBGA blocking monoclonal antibodies. RESULTS: The LIPS-Blockade assay was comparable in specificity to a standard HBGA blocking protocol performed with VLPs. Using time-ordered patient sera, the luciferase-based approach was also able to detect changes in HBGA blocking titers following viral challenge and natural infection with norovirus. CONCLUSION: In this study we developed a rapid, robust, and scalable surrogate neutralization assay for noroviruses that circumvented the need for purified VLPs. This LIPS-Blockade assay should streamline the process of large-scale immunological studies, ultimately aiding in the characterization of protective immunity to human noroviruses.


Assuntos
Anticorpos Antivirais , Antígenos de Grupos Sanguíneos , Norovirus , Anticorpos Monoclonais/análise , Anticorpos Antivirais/análise , Antígenos de Grupos Sanguíneos/metabolismo , Genótipo , Humanos , Luciferases/metabolismo , Testes de Neutralização
19.
J Gen Virol ; 91(Pt 3): 739-49, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19906938

RESUMO

In common with other positive-strand RNA viruses, replication of feline calicivirus (FCV) results in rearrangement of intracellular membranes and production of numerous membrane-bound vesicular structures on which viral genome replication is thought to occur. In this study, bioinformatics approaches have identified three of the FCV non-structural proteins, namely p32, p39 and p30, as potential transmembrane proteins. These proteins were able to target enhanced cyan fluorescent protein to membrane fractions where they behaved as integral membrane proteins. Immunofluorescence microscopy of these proteins expressed in cells showed co-localization with endoplasmic reticulum (ER) markers. Further electron microscopy analysis of cells co-expressing FCV p39 or p30 with a horseradish peroxidase protein containing the KDEL ER retention motif demonstrated gross morphological changes to the ER. Similar reorganization patterns, especially for those produced by p30, were observed in naturally infected Crandel-Rees feline kidney cells. Together, the data demonstrate that the p32, p39 and p30 proteins of FCV locate to the ER and lead to reorganization of ER membranes. This suggests that they may play a role in the generation of FCV replication complexes and that the endoplasmic reticulum may represent the potential source of the membrane vesicles induced during FCV infection.


Assuntos
Calicivirus Felino/fisiologia , Retículo Endoplasmático/química , Proteínas de Membrana/análise , Proteínas não Estruturais Virais/análise , Replicação Viral , Animais , Gatos , Linhagem Celular , Células Cultivadas , Retículo Endoplasmático/ultraestrutura , Microscopia Confocal/métodos , Microscopia Eletrônica de Transmissão
20.
J Virol ; 83(8): 3647-56, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19211757

RESUMO

Noroviruses (NVs) are recognized as a major cause of nonbacterial gastroenteritis in humans. Studies of the human NVs continue to be hampered by the inability to propagate them in any cell culture system. Until recently, most data concerning NV replication were derived from studies of feline calicivirus and rabbit hemorrhagic disease virus, which are cultivable members of the family Caliciviridae. From such studies, it was proposed that caliciviruses induce apoptosis to facilitate the dissemination of viral progeny in the host. The discovery that MNV type 1 (MNV-1) grows in RAW264.7 cells provided the first cell culture system for use in studying the role of apoptosis in NV infection. We first showed that MNV-1 replication triggered apoptosis in infected RAW264.7 cells and then demonstrated that cell death was associated with activation of caspase-9 and caspase-3 through the mitochondrial pathway. This process was dependent on virus replication, since inactivated virus failed to induce signs of apoptosis. In order to better understand the apoptotic process induced by MNV-1 infection of RAW264.7 cells, we investigated the expression profiles of MNV-1-infected versus mock-infected cells. Survivin, a member of the inhibitor of apoptosis protein family, was found to be significantly downregulated in an inverse relationship with the virus genome replication. This study showed that, unlike other viruses that upregulate survivin, MNV-1 is the first virus found to downregulate the levels of survivin. We observed that MNV-1 replication in RAW264.7 cells activated caspases, resulting in apoptosis through the mitochondrial pathway, possibly as a result of downregulation of survivin.


Assuntos
Apoptose , Regulação para Baixo , Macrófagos/virologia , Proteínas Associadas aos Microtúbulos/biossíntese , Norovirus/patogenicidade , Animais , Caspases/biossíntese , Perfilação da Expressão Gênica , Proteínas Inibidoras de Apoptose , Camundongos , Proteínas Repressoras , Survivina , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa