RESUMO
Synucleinopathies are a group of diseases characterized by brain aggregates of α-synuclein (α-syn). The gradual accumulation of α-syn and the role of inflammation in early-stage pathogenesis remain poorly understood. We explored this interaction by inducing chronic inflammation in a common pre-clinical synucleinopathy mouse model. Three weeks post unilateral intra-striatal injections of human α-syn pre-formed fibrils (PFF), mice underwent repeated intraperitoneal injections of 1 mg/ml lipopolysaccharide (LPS) for 3 weeks. Histological examinations of the ipsilateral site showed phospho-α-syn regional spread and LPS-induced neutrophil recruitment to the brain vasculature. Biochemical assessment of the contralateral site confirmed spreading of α-syn aggregation to frontal cortex and a rise in intracerebral TNF-α, IL-1ß, IL-10 and KC/GRO cytokines levels due to LPS. No LPS-induced exacerbation of α-syn pathology load was observed at this stage. Proteomic analysis was performed contralateral to the PFF injection site using LC-MS/MS. Subsequent downstream Reactome Gene-Set Analysis indicated that α-syn pathology alters mitochondrial metabolism and synaptic signaling. Chronic LPS-induced inflammation further lead to an overrepresentation of pathways related to fibrin clotting as well as integrin and B cell receptor signaling. Western blotting confirmed a PFF-induced increase in fibrinogen brain levels and a PFF + LPS increase in Iba1 levels, indicating activated microglia. Splenocyte profiling revealed changes in T and B cells, monocytes, and neutrophils populations due to LPS treatment in PFF injected animals. In summary, early α-syn pathology impacts energy homeostasis pathways, synaptic signaling and brain fibrinogen levels. Concurrent mild systemic inflammation may prime brain immune pathways in interaction with peripheral immunity.
Assuntos
Encéfalo , Inflamação , Lipopolissacarídeos , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Animais , Camundongos , Inflamação/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Masculino , Humanos , Coagulação Sanguínea/efeitos dos fármacos , Sinucleinopatias/metabolismo , Sinucleinopatias/patologia , Citocinas/metabolismo , Modelos Animais de DoençasRESUMO
Tau protein pathology is a hallmark of many neurodegenerative diseases, including Alzheimer's Disease or frontotemporal dementia. Synaptic dysfunction and abnormal visual evoked potentials have been reported in murine models of tauopathy, but little is known about the state of the network activity on a single neuronal level prior to brain atrophy. In the present study, oscillatory rhythms and single-cell calcium activity of primary visual cortex pyramidal neuron population were investigated in basal and light evoked states in the rTg4510 tauopathy mouse model prior to neurodegeneration. We found a decrease in their responsivity and overall activity which was insensitive to GABAergic modulation. Despite an enhancement of basal state coactivation of cortical pyramidal neurons, a loss of input-output synchronicity was observed. Dysfunction of cortical pyramidal function was also reflected in a reduction of basal theta oscillations and enhanced susceptibility to a sub-convulsive dose of pentylenetetrazol in rTg4510 mice. Our results unveil impairments in visual cortical pyramidal neuron processing and define aberrant oscillations as biomarker candidates in early stages of neurodegenerative tauopathies.
Assuntos
Doença de Alzheimer , Tauopatias , Camundongos , Animais , Potenciais Evocados Visuais , Camundongos Transgênicos , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Neurônios/metabolismo , Doença de Alzheimer/metabolismo , Modelos Animais de DoençasRESUMO
Parkinson's disease (PD) affects motor function through degenerative processes and synaptic transmission impairments in the basal ganglia. None of the treatments available delays or stops the progression of the disease. While α-synuclein pathological accumulation represents a hallmark of the disease in its idiopathic form, leucine rich repeat kinase 2 (LRRK2) is genetically associated with familial and sporadic forms of PD. The genetic information suggests that LRRK2 kinase activity plays a role in the pathogenesis of the disease. To support a potential link between LRRK2 and α-synuclein in the pathophysiological mechanisms underlying PD, the effect of LRRK2 ablation or LRRK2 kinase pharmacological inhibition were studied in rats with adeno-associated virus-induced (AAV) α-synuclein overexpression in the nigrostriatal pathway. We first report that viral overexpression of α-synuclein induced increased burst firing in subthalamic neurons. Aberrant firing pattern of subthalamic neurons has also been reported in PD patients and neurotoxin-based animal models, and is hypothesized to play a key role in the appearance of motor dysfunction. We further report that genetic LRRK2 ablation, as well as pharmacological inhibition of LRRK2 kinase activity with PFE-360, reversed the aberrant firing pattern of subthalamic neurons induced by AAV-α-synuclein overexpression. This effect of LRRK2 modulation was not associated with any neuroprotective effect or motor improvement. Nonetheless, our findings may indicate a potential therapeutic benefit of LRRK2 kinase inhibition by normalizing the aberrant neuronal activity of subthalamic neurons induced by AAV-α-synuclein, a neurophysiological trait recapitulating observations in PD.
Assuntos
Potenciais de Ação/fisiologia , Dependovirus/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/deficiência , Transtornos Parkinsonianos/metabolismo , Núcleo Subtalâmico/metabolismo , alfa-Sinucleína/biossíntese , Potenciais de Ação/efeitos dos fármacos , Animais , Dependovirus/genética , Feminino , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Transtornos Parkinsonianos/genética , Ratos , Ratos Long-Evans , Ratos Sprague-Dawley , Ratos Transgênicos , Núcleo Subtalâmico/efeitos dos fármacos , alfa-Sinucleína/genéticaRESUMO
Symptoms of schizophrenia have been linked to insults during neurodevelopment such as NMDA receptor (NMDAR) antagonist exposure. In animal models, this leads to schizophrenia-like behavioral symptoms as well as molecular and functional changes within hippocampal and prefrontal regions. The aim of this study was to determine how administration of the NMDAR antagonist phencyclidine (PCP) during neurodevelopment affects functional network activity within the hippocampus and medial prefrontal cortex (mPFC). We recorded field potentials in vivo after electrical brain stem stimulation and observed a suppression of evoked theta power in ventral hippocampus, while evoked gamma power in mPFC was enhanced in rats administered with PCP neonatally. In addition, increased gamma synchrony elicited by acute administration of the NMDAR antagonist MK-801 was exaggerated in neonatal PCP animals. These data suggest that NMDAR antagonist exposure during brain development alters functional networks within hippocampus and mPFC possibly contributing to the reported behavioral symptoms of this animal model of schizophrenia.NEW & NOTEWORTHY We show that insults with a NMDA receptor antagonist during neurodevelopment lead to suppressed evoked theta oscillations in ventral hippocampus in adult rats, while evoked gamma oscillations are enhanced and hypersensitive to an acute challenge with a NMDA receptor antagonist in prefrontal cortex. These observations reveal the significance of neurodevelopmental disturbances in the evolvement of schizophrenia-like symptoms and contribute to the understanding of the functional deficits underlying aberrant behavior in this disease.
Assuntos
Modelos Animais de Doenças , Antagonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/crescimento & desenvolvimento , Fenciclidina/toxicidade , Córtex Pré-Frontal/crescimento & desenvolvimento , Esquizofrenia/fisiopatologia , Animais , Animais Recém-Nascidos , Sincronização Cortical/efeitos dos fármacos , Sincronização Cortical/fisiologia , Maleato de Dizocilpina/administração & dosagem , Estimulação Elétrica , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Ritmo Gama/efeitos dos fármacos , Ritmo Gama/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Masculino , Vias Neurais/efeitos dos fármacos , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiopatologia , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/fisiopatologia , Distribuição Aleatória , Ratos , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Ritmo Teta/efeitos dos fármacos , Ritmo Teta/fisiologiaRESUMO
The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)-P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Neurônios/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Núcleo Subtalâmico/citologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Dendritos/metabolismo , Dendritos/ultraestrutura , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/ultraestrutura , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/genética , Núcleo Subtalâmico/crescimento & desenvolvimentoRESUMO
HSP90 (Heat shock protein 90) is a molecular chaperone protein ubiquitously expressed throughout all tissues in the body. HSP90 has been proposed as a target to increase turnover of pathological proteins leading to neurodegeneration in Huntington's disease, Parkinson's disease and Alzheimer's disease. The mechanism of how HSP90 inhibition leads to clearance of misfolded proteins is not fully understood. It may involve direct effects of inhibiting ATPase function, indirect effects by inducing the heat-shock-response resulting in upregulation of other chaperone proteins like HSP70 or a combination of both. In the current work we established a methodology to investigate the relationship between HSP90 target occupancy and HSP70 induction in vivo. We also characterized the acute effect of two different HSP90 inhibitors in the rTg4510 transgenic mouse model of Alzheimer's disease which displays a tau-mediated synaptic dysfunction. We show that reversal of synaptic impairments in this model can be obtained with a compound which has a high HSP70 induction capacity. The current developed assay methodologies may thus be of significant use in the further elucidation of the mechanism involved in the in vivo effect of HSP90 inhibition in models of neurodegeneration. Further on, the ability of HSP90 inhibitors to normalize synaptic dysfunction in an in vivo disease model of Alzheimer's disease could have therapeutic relevance and further strengthens the usefulness of this animal model to establish pharmacodynamic effect of HSP90 inhibition.
Assuntos
Encéfalo/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Linhagem Celular , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Humanos , Camundongos Transgênicos , Proteínas tau/genéticaRESUMO
Protein aggregation is a predominant feature of many neurodegenerative diseases, including synucleinopathies, which are characterized by cellular inclusions containing α-Synuclein (αSyn) phosphorylated at serine 129 (pSer129). In the present study, we characterized the development of αSyn pre-formed fibril (PFF)-induced pSer129-αSyn pathology in F28tg mice overexpressing human wild-type αSyn, as well as in ex vivo organotypic cultures and in vitro primary cultures from the same mouse model. Concurrently, we collected cerebrospinal fluid (CSF) from mice and conditioned media from ex vivo and in vitro cultures and quantified the levels of neurofilament light chain (NFL), a biomarker of neurodegeneration. We found that the intra-striatal injection of PFFs induces the progressive spread of pSer129-αSyn pathology and microglial activation in vivo, as well as modest increases in NFL levels in the CSF. Similarly, PFF-induced αSyn pathology occurs progressively in ex vivo organotypic slice cultures and is accompanied by significant increases in NFL release into the media. Using in vitro primary hippocampal cultures, we further confirmed that pSer129-αSyn pathology and NFL release occur in a manner that correlates with the fibril dose and the level of the αSyn protein. Overall, we demonstrate that αSyn pathology is associated with NFL release across preclinical models of seeded αSyn aggregation and that the pharmacological inhibition of αSyn aggregation in vitro also significantly reduces NFL release.
Assuntos
Doenças Neurodegenerativas , Sinucleinopatias , Animais , Humanos , Camundongos , alfa-Sinucleína/metabolismo , Filamentos Intermediários/metabolismo , Doenças Neurodegenerativas/patologia , Agregados Proteicos/fisiologiaRESUMO
BACKGROUND: Tauopathies such as Alzheimer's disease (AD) and frontotemporal dementia (FTD) are characterized by formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Early pathophysiological and functional changes related to neurofibrillary tangles formation are considered to occur prior to extensive neurodegeneration. Hyperphosphorylated tau has been detected in postmortem retinas of AD and FTD patients, and the visual pathway is an easily accessible system in a clinical setting. Hence, assessment of the visual function may offer the potential to detect consequences of early tau pathology in patients. OBJECTIVE: The aim of this study was to evaluate visual function in a tauopathy mouse model in relation to tau hyperphosphorylation and neurodegeneration. METHODS: In this study we explored the association between the visual system and functional consequences of tau pathology progression using a tauopathy rTg4510 mouse model. To this end, we recorded full-field electroretinography and visual evoked potentials in anesthetized and awake states at different ages. RESULTS: While retinal function remained mostly intact within all the age groups investigated, we detected significant changes in amplitudes of visual evoked potential responses in young rTg4510 mice exhibiting early tau pathology prior to neurodegeneration. These functional alterations in the visual cortex were positively correlated with pathological tau levels. CONCLUSION: Our findings suggest that visual processing could be useful as a novel electrophysiological biomarker for early stages of tauopathy.
Assuntos
Doença de Alzheimer , Demência Frontotemporal , Tauopatias , Camundongos , Animais , Potenciais Evocados Visuais , Demência Frontotemporal/patologia , Camundongos Transgênicos , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismo , Doença de Alzheimer/diagnóstico , Biomarcadores , Modelos Animais de DoençasRESUMO
Attention deficit hyperactivity disorder (ADHD) is the most frequently diagnosed neurodevelopmental disorder worldwide. Affected individuals present with hyperactivity, inattention, and cognitive deficits and display a characteristic paradoxical response to drugs affecting the dopaminergic system. However, the underlying pathophysiology of ADHD and how this relates to dopaminergic transmission remains to be fully understood. Sorcs2-/- mice uniquely recapitulate symptoms reminiscent of ADHD in humans. Here, we show that lack of SorCS2 in mice results in lower sucrose intake, indicating general reward deficits. Using in-vivo recordings, we further find that dopaminergic transmission in the ventral tegmental area (VTA) is shifted towards a more regular firing pattern with marked reductions in the relative occurrence of irregular firing in Sorcs2-/- mice. This was paralleled by abnormal acute behavioral responses to dopamine receptor agonists, suggesting fundamental differences in dopaminergic circuits and indicating a perturbation in the balance between the activities of the postsynaptic dopamine receptor DRD1 and the presynaptic inhibitory autoreceptor DRD2. Interestingly, the hyperactivity and drug response of Sorcs2-/- mice were markedly affected by novelty. Taken together, our findings show how loss of a candidate ADHD-risk gene has marked effects on dopaminergic circuit function and the behavioral response to the environment.
Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Animais , Transtorno do Deficit de Atenção com Hiperatividade/genética , Dopamina , Camundongos , Proteínas do Tecido Nervoso , Receptores de Superfície Celular , Receptores Dopaminérgicos , Recompensa , Área Tegmentar VentralRESUMO
Serotonin 2C receptors are G protein-coupled receptors expressed by GABAergic, glutamatergic, and dopaminergic neurons. Anatomically, they are present in various brain regions, including cortical areas, hippocampus, ventral midbrain, striatum, nucleus accumbens, hypothalamus, and amygdala. A large body of evidence supports a critical role of serotonin 2C receptors in mediating the interaction between serotonergic and dopaminergic systems, which is at the basis of their proposed involvement in the regulation of mood, affective behavior, and memory. In addition, their expression in specific neuronal populations in the hypothalamus would be critical for their role in the regulation of feeding behavior. Modulation of these receptors has therefore been proposed to be of interest in the search for novel pharmacological strategies for the treatment of various pathological conditions, including schizophrenia and mood disorders, as well as obesity. More precisely, blockade of serotonin 2C receptors has been suggested to provide antidepressant and anxiolytic benefit, while stimulation of these receptors may offer therapeutic benefit for the treatment of psychotic symptoms in schizophrenia and obesity. In addition, modulation of serotonin 2C receptors may offer cognitive-enhancing potential, albeit still a matter of debate. In the present review, the most compelling evidence from the literature is presented and tentative hypotheses with respect to existing controversies are outlined.
Assuntos
Agonistas do Receptor 5-HT2 de Serotonina , Antagonistas do Receptor 5-HT2 de Serotonina , Antagonistas da Serotonina/uso terapêutico , Agonistas do Receptor de Serotonina/uso terapêutico , Animais , Cognição/efeitos dos fármacos , Humanos , Transtornos do Humor/tratamento farmacológico , Transtornos do Humor/fisiopatologia , Obesidade/tratamento farmacológico , Obesidade/fisiopatologia , Receptor 5-HT2C de Serotonina/fisiologia , Esquizofrenia/tratamento farmacológico , Esquizofrenia/fisiopatologia , Transdução de Sinais/efeitos dos fármacosRESUMO
Phosphodiesterase (PDE) 10A is highly expressed in medium spiny neurons of the striatum, at the confluence of the corticostriatal glutamatergic and the midbrain dopaminergic pathways, both believed to be involved in the physiopathology of schizophrenia. There is a growing body of evidence suggesting that targeting PDE10A may be beneficial for the treatment of positive symptoms in schizophrenia. The aim of the present study was to investigate how PDE10A inhibition modulates mesolimbic dopaminergic neurotransmission. We found that the selective PDE10A inhibitor, MP-10, blocked D-amphetamine-induced hyperactivity as well as D-amphetamine-induced dopamine efflux in the nucleus accumbens in a dose-dependent manner. We further investigated the mechanism by which PDE10A inhibition affects dopaminergic neurotransmission. We report that MP-10 potentiated the effect of a high but not a low dose of D-amphetamine on the mean firing rate of dopaminergic neurons recorded from the ventral tegmental area. Similarly, the effect of a high, but not a low dose of D-amphetamine, was completely reversed by the selective D(1) antagonist, SCH23390. These data suggest that the D(1)-regulated feedback control of midbrain dopamine neurons is a critical pathway involved in the modulation of the response of mesolimbic dopamine neurons to D-amphetamine by PDE10A inhibition.
Assuntos
Dopamina/metabolismo , Neurônios/fisiologia , Núcleo Accumbens/metabolismo , Inibidores de Fosfodiesterase/administração & dosagem , Diester Fosfórico Hidrolases/metabolismo , Receptores de Dopamina D1/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Benzazepinas/farmacologia , Dextroanfetamina/farmacologia , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Interações Medicamentosas , Masculino , Mesencéfalo/citologia , Microdiálise/métodos , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Dopamina D1/antagonistas & inibidoresRESUMO
Dopaminergic (DAergic) neurons in the ventral tegmental area express both KCNQ2 and KCNQ4 channels, which opening is expected to decrease neuronal excitability via neuronal hyper-polarization. Because psychotic symptoms are believed to be associated with an increased excitability of dopamine (DA) cells in the mesencephalon, KCNQ channels might represent a new potential target for the treatment of psychosis. The aim of our study was to investigate the antipsychotic-like potential of KCNQ channel opening via modulation of neuronal activity within the mesolimbic DAergic system. We report that retigabine [N-(2-amino-4-(fluorobenzylamino)-phenyl)carbamic acid ester], a KCNQ opener, dose-dependently reduced basal DA firing rate and more potently suppressed burst firing activity in the ventral tegmental area, whereas XE-991 [10,10-bis(pyridinylmethyl)-9(10H)-anthracenone], a selective KCNQ blocker, induced opposite effects. In addition, retigabine prevented d-amphetamine-induced DA efflux in the nucleus accumbens and d-amphetamine-induced locomotor hyperactivity. In contrast, XE-991 potentiated both the locomotor hyperactivity and DA efflux evoked by d-amphetamine. These data strongly suggest that the activation of KCNQ channels attenuates DAergic neurotransmission in the mesolimbic system, particularly in conditions of excessive DAergic activity. In a model predictive of antipsychotic activity, the conditioned avoidance response paradigm, retigabine was found to inhibit avoidance responses, an effect blocked by coadministration of XE-991. Furthermore, retigabine was found to significantly inhibit the hyperlocomotor response to a phencyclidine (PCP) challenge in PCP-sensitized animals, considered as a disease model for schizophrenia. Taken together, our studies provide evidence that KCNQ channel openers represent a potential new class of antipsychotics.
Assuntos
Antipsicóticos/farmacologia , Carbamatos/farmacologia , Dopamina/metabolismo , Canais de Potássio KCNQ/fisiologia , Sistema Límbico/fisiologia , Fenilenodiaminas/farmacologia , Transmissão Sináptica/fisiologia , Animais , Antracenos/farmacologia , Carbamatos/administração & dosagem , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/efeitos dos fármacos , Sistema Límbico/efeitos dos fármacos , Masculino , Microdiálise/métodos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Fenilenodiaminas/administração & dosagem , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacosRESUMO
Parkinson's disease (PD) is a progressive neurodegenerative disorder associated with impaired motor function and several non-motor symptoms, with no available disease modifying treatment. Intracellular accumulation of pathological α-synuclein inclusions is a hallmark of idiopathic PD, whereas, dominant mutations in leucine-rich repeat kinase 2 (LRRK2) are associated with familial PD that is clinically indistinguishable from idiopathic PD. Recent evidence supports the hypothesis that an increase in LRRK2 kinase activity is associated with the development of not only familial LRRK2 PD, but also idiopathic PD. Previous reports have shown preclinical effects of LRRK2 modulation on α-synuclein-induced neuropathology. Increased subthalamic nucleus (STN) burst firing in preclinical neurotoxin models and PD patients is hypothesized to be causally involved in the development of the motor deficit in PD. To study a potential pathophysiological relationship between α-synuclein pathology and LRRK2 kinase activity in PD, we investigated the effect of chronic LRRK2 inhibition in an AAV-α-synuclein overexpression rat model. In this study, we report that chronic LRRK2 inhibition using PFE-360 only induced a marginal effect on motor function. In addition, the aberrant STN burst firing and associated neurodegenerative processes induced by α-synuclein overexpression model remained unaffected by chronic LRRK2 inhibition. Our findings do not strongly support LRRK2 inhibition for the treatment of PD. Therefore, the reported beneficial effects of LRRK2 inhibition in similar α-synuclein overexpression rodent models must be considered with prudence and additional studies are warranted in alternative α-synuclein-based models.
Assuntos
Antiparkinsonianos/farmacologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Morfolinas/farmacologia , Doença de Parkinson/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , alfa-Sinucleína/metabolismo , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Humanos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/genéticaRESUMO
Parkinson's disease (PD) is a progressive neurodegenerative disorder for which there is no existing therapeutic approach to delay or stop progression. Genetic, biochemical and pre-clinical studies have provided evidence that leucine-rich-repeat-kinase-2 (LRRK2) kinase is involved in the pathogenesis of PD, and small molecule LRRK2 inhibitors represent a novel potential therapeutic approach. However, potentially adverse target-related effects have been discovered in the lung and kidneys of LRRK2 knock-out (ko) mice and rats. It is unclear if the LRRK2 ko effect in the kidneys and lung is also induced by pharmacological inhibition of the LRRK2 kinase. Here, we show that treatment with the LRRK2 inhibitor PFE-360 in rats induces a morphological kidney phenotype resembling that of the LRRK2 ko rats, whereas no effects were observed in the lung. The PFE-360 treatment induced morphological changes characterised by darkened kidneys and progressive accumulation of hyaline droplets in the renal proximal tubular epithelium. However, no histopathological evidence of renal tubular injury or changes in the blood and urine parameters that would be indicative of kidney toxicity or impaired kidney function were observed after up to 12â¯weeks of treatment. Morphological changes were detected in the kidney after 2 weeks of treatment and were partially reversible within a 30â¯day treatment-free period. Our findings suggest that pharmacological LRRK2 inhibition may not have adverse consequences for kidney function.
Assuntos
Inibidores Enzimáticos/toxicidade , Rim/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/antagonistas & inibidores , Morfolinas/toxicidade , Pirimidinas/toxicidade , Pirróis/toxicidade , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Rim/anatomia & histologia , Rim/metabolismo , Testes de Função Renal , Túbulos Renais Proximais/anatomia & histologia , Túbulos Renais Proximais/efeitos dos fármacos , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/biossíntese , Pulmão/anatomia & histologia , Pulmão/efeitos dos fármacos , Ratos , Ratos Sprague-DawleyRESUMO
INTRODUCTION: The abnormal hyperphosphorylation of the microtubule-associated protein tau plays a crucial role in neurodegeneration in Alzheimer's disease (AD) and other tauopathies. METHODS: Highly specific and selective anti-pS396-tau antibodies have been generated using peptide immunization with screening against pathologic hyperphosphorylated tau from rTg4510 mouse and AD brains and selection in in vitro and in vivo tau seeding assays. RESULTS: The antibody C10.2 bound specifically to pS396-tau with an IC50 of 104 pM and detected preferentially hyperphosphorylated tau aggregates from AD brain with an IC50 of 1.2 nM. C10.2 significantly reduced tau seeding of P301L human tau in HEK293 cells, murine cortical neurons, and mice. AD brain extracts depleted with C10.2 were not able to seed tau in vitro and in vivo, demonstrating that C10.2 specifically recognized pathologic seeding-competent tau. DISCUSSION: Targeting pS396-tau with an antibody like C10.2 may provide therapeutic benefit in AD and other tauopathies.
RESUMO
1q21.1 hemizygous microdeletion is a copy number variant leading to eightfold increased risk of schizophrenia. In order to investigate biological alterations induced by this microdeletion, we generated a novel mouse model (Df(h1q21)/+) and characterized it in a broad test battery focusing on schizophrenia-related assays. Df(h1q21)/+ mice displayed increased hyperactivity in response to amphetamine challenge and increased sensitivity to the disruptive effects of amphetamine and phencyclidine hydrochloride (PCP) on prepulse inhibition. Probing of the direct dopamine (DA) pathway using the DA D1 receptor agonist SKF-81297 revealed no differences in induced locomotor activity compared to wild-type mice, but Df(h1q21)/+ mice showed increased sensitivity to the DA D2 receptor agonist quinpirole and the D1/D2 agonist apomorphine. Electrophysiological characterization of DA neuron firing in the ventral tegmental area revealed more spontaneously active DA neurons and increased firing variability in Df(h1q21)/+ mice, and decreased feedback reduction of DA neuron firing in response to amphetamine. In a range of other assays, Df(h1q21)/+ mice showed no difference from wild-type mice: gross brain morphology and basic functions such as reflexes, ASR, thermal pain sensitivity, and motor performance were unaltered. Similarly, anxiety related measures, baseline prepulse inhibition, and seizure threshold were unaltered. In addition to the central nervous system-related phenotypes, Df(h1q21)/+ mice exhibited reduced head-to tail length, which is reminiscent of the short stature reported in humans with 1q21.1 deletion. With aspects of both construct and face validity, the Df(h1q21)/+ model may be used to gain insight into schizophrenia-relevant alterations in dopaminergic transmission.
Assuntos
Anormalidades Múltiplas , Comportamento Animal , Deleção Cromossômica , Agonistas de Dopamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Antagonistas de Aminoácidos Excitatórios/farmacologia , Megalencefalia , Núcleo Accumbens/metabolismo , Inibição Pré-Pulso , Receptores Dopaminérgicos/metabolismo , Esquizofrenia , Área Tegmentar Ventral/metabolismo , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/fisiopatologia , Anfetamina/farmacologia , Animais , Apomorfina/farmacologia , Comportamento Animal/efeitos dos fármacos , Benzazepinas/farmacologia , Cromossomos Humanos Par 1/metabolismo , Modelos Animais de Doenças , Agonistas de Dopamina/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Neurônios Dopaminérgicos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/administração & dosagem , Megalencefalia/metabolismo , Megalencefalia/patologia , Megalencefalia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/efeitos dos fármacos , Fenciclidina/farmacologia , Fenótipo , Inibição Pré-Pulso/efeitos dos fármacos , Quimpirol/farmacologia , Receptores Dopaminérgicos/efeitos dos fármacos , Esquizofrenia/metabolismo , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Área Tegmentar Ventral/efeitos dos fármacosRESUMO
The neuropeptide neurotensin (NT) exerts a wide range of central and peripheral effects. In particular, ejection of NT (10(-7) M, 65 nl) into the ventral tegmental area (VTA) in anaesthetised rats pre-treated with pargyline increases the dopamine (DA) efflux within the nucleus accumbens (NAcc) as measured by differential pulse amperometry (DPA) combined with carbon fibre electrodes. However, this effect is not blocked by systemic pre-treatment with the potent and selective non-peptide NT receptor antagonists SR 48692 and SR 142948A, at any dose studied. The present study was designed to determine the ability of these NT receptor antagonists to block the increase in DA efflux evoked within the NAcc when they are locally applied with the peptide into the VTA. The competitive N-methyl- D-aspartate (NMDA) receptor antagonist, 2-amino-5-phosphonopentanoic acid (AP-5), applied into the VTA 1 min before NMDA, blocked the effect of NMDA on DA efflux concentration and volume dependently, thus demonstrating the suitability of our experimental procedure for characterizing both an agonist and an antagonist specific for receptors present on mesencephalic dopaminergic neurons and involved in the regulation of DA efflux within the NAcc. Intra-VTA application of SR 142948A blocked the NT-evoked increase in DA efflux within the NAcc dose dependently whereas SR 48692, at the concentration used, was inactive. These results suggest that NT regulates mesencephalic dopaminergic activity through NT receptors sensitive to SR 142948A, but possibly not to SR 48692.
Assuntos
Adamantano/análogos & derivados , Adamantano/farmacologia , Dopamina/metabolismo , Imidazóis/farmacologia , Neurotensina/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Receptores de Neurotensina/antagonistas & inibidores , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Masculino , N-Metilaspartato/farmacologia , Neurotensina/fisiologia , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Neurotensina/fisiologia , Área Tegmentar Ventral/metabolismoRESUMO
Memantine is an uncompetitive, low-affinity NMDA receptor antagonist clinically used for the treatment of cognitive deficits in moderate to severe Alzheimer's disease. Both neurophysiological and behavioral studies in rodents have suggested a beneficial effect of memantine on synaptic plasticity and learning performances. In the present study, we investigated the effect of memantine on pedonculopontine-elicited theta oscillations in the hippocampus of urethane anesthetized mice, a model shown to be sensitive to several pharmacological agents exhibiting cognitive-enhancing properties. We found that a low dose of memantine potentiated elicited theta power while a high dose was disruptive. The low dose of memantine used was shown to yield an unbound brain concentration well within the range of therapeutic concentrations reported in rodent brain extracellular fluid and human cerebrospinal fluid. For further comparison, the effect of another uncompetitive NMDA receptor antagonist with higher affinity, i.e. MK-801, was also investigated. MK-801 was at a low dose devoid of effect on elicited theta power, while a high dose, within the range of doses reported to induce cognitive deficits in a variety of hippocampal-dependent learning paradigms in mice, was found disruptive on elicited theta waves. Taken together, our results suggest that clinically relevant doses of memantine promote neuronal network synchronization in the hippocampus, which may represent an underlying mechanism for the reported cognitive-enhancing properties in both preclinical and clinical studies.
Assuntos
Anestesia , Hipocampo/fisiologia , Memantina/farmacologia , Nootrópicos/farmacologia , Ritmo Teta/fisiologia , Anestesia/métodos , Animais , Estimulação Elétrica/métodos , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Ritmo Teta/efeitos dos fármacosRESUMO
The development of animal models mimicking symptoms associated with schizophrenia has been a critical step in understanding the neurobiological mechanisms underlying the disease. Long-term social isolation from weaning in rodents, a model based on the neurodevelopmental hypothesis of schizophrenia, has been suggested to mimic some of the deficits seen in schizophrenic patients. We confirm in the present study that socially isolated rats display an increase in both spontaneous and d-amphetamine-induced locomotor activity, as well as deficits in sensorimotor gating as assessed in a pre-pulse inhibition paradigm. In addition, in vivo electrophysiological studies revealed changes in dopaminergic cell firing activity in the ventral tegmental area of isolated rats when compared to group-housed controls. These alterations include an increase in the number of spontaneously active dopaminergic neurons, and a change of firing activity towards a more irregular and bursting firing pattern. Taken together, our findings suggest that the behavioral phenotype induced by social isolation may be driven by an overactive dopamine system.
Assuntos
Dopamina/fisiologia , Isolamento Social , Potenciais de Ação , Animais , Dextroanfetamina/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Feminino , Habituação Psicofisiológica , Atividade Motora/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Reflexo de Sobressalto/efeitos dos fármacos , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/fisiologiaRESUMO
Selective serotonin reuptake inhibitors are the most widely prescribed antidepressant drugs. However, they exhibit a slow onset of action, putatively due to the initial decrease in serotonin cell firing mediated via somato-dendritic autoreceptors. Interestingly, blockade of 5-HT(2C) receptors significantly potentiates the effect of citalopram, a selective serotonin reuptake inhibitor, on serotonin efflux in the hippocampus and prefrontal cortex (Cremers, T.I.F.H., Giorgetti, M., Bosker, F.J., Hogg, S., Arnt, J., Mork, A., Honig, G., Bøgesø, K.P., Westerink, B.H.C., den Boer, J.A., Wikstrøm, H.V., Tecott, L.H., 2004. Inactivation of 5-HT(2C) receptors potentiates consequences of serotonin reuptake blockade. Neuropsychopharmacology 29, 1782-1789; Cremers, T.I.F.H., Rea, K., Bosker, F.J., Wikström, H.V., Hogg, S., Mørk, A., Westerink, B.H.C., 2007. Augmentation of SSRI effects on serotonin by 5-HT(2C) antagonists: mechanistic studies. Neuropsychopharmacology 32, 1550-1557.). Using in vivo electrophysiology, we show in the present study that the purported selective 5-HT(2C) receptor antagonist, SB242,084, dose-dependently counteracts citalopram-induced inhibition of serotonin cell firing. Even though the effect of SB242,084 is significant at a dose found in vivo to also partially occupy 5-HT(2A) receptors, indicating a possible contribution of a partial blockade of 5-HT(2A) receptors together with 5-HT(2C) receptors, we suggest that high occupancy at 5-HT(2C) receptors is essential for the blockade of the inhibitory effect of citalopram on 5-HT cell firing. Using microdialysis, we also show that the potentiation by SB242,084 on serotonin efflux requires an action of citalopram outside the terminal, most likely at the somato-dendritic level (i.e., on serotonin cell firing). Further experiments using local 5-HT(2C) receptor blockade indicate a role of 5-HT(2C) receptors located in the prefrontal cortex. Modulation of short or long feedback loops originating in the prefrontal cortex by 5-HT(2C) receptors could directly inhibit serotonin efflux, or alternatively, regulate serotonin cell firing in the dorsal raphe nucleus, thereby modulating serotonin efflux indirectly.