Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Proteomics ; 20(1): 44, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875801

RESUMO

The quest for understanding and managing the long-term effects of COVID-19, often referred to as Long COVID or post-COVID-19 condition (PCC), remains an active research area. Recent findings highlighted angiopoietin-1 (ANG-1) and p-selectin (P-SEL) as potential diagnostic markers, but validation is essential, given the inconsistency in COVID-19 biomarker studies. Leveraging the biobanque québécoise de la COVID-19 (BQC19) biobank, we analyzed the data of 249 participants. Both ANG-1 and P-SEL levels were significantly higher in patients with PCC participants compared with control subjects at 3 months using the Mann-Whitney U test. We managed to reproduce and validate the findings, emphasizing the importance of collaborative biobanking efforts in enhancing the reproducibility and credibility of Long COVID research outcomes.

2.
PLoS Comput Biol ; 17(5): e1008990, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34048427

RESUMO

RNA tertiary structure is crucial to its many non-coding molecular functions. RNA architecture is shaped by its secondary structure composed of stems, stacked canonical base pairs, enclosing loops. While stems are precisely captured by free-energy models, loops composed of non-canonical base pairs are not. Nor are distant interactions linking together those secondary structure elements (SSEs). Databases of conserved 3D geometries (a.k.a. modules) not captured by energetic models are leveraged for structure prediction and design, but the computational complexity has limited their study to local elements, loops. Representing the RNA structure as a graph has recently allowed to expend this work to pairs of SSEs, uncovering a hierarchical organization of these 3D modules, at great computational cost. Systematically capturing recurrent patterns on a large scale is a main challenge in the study of RNA structures. In this paper, we present an efficient algorithm to compute maximal isomorphisms in edge colored graphs. We extend this algorithm to a framework well suited to identify RNA modules, and fast enough to considerably generalize previous approaches. To exhibit the versatility of our framework, we first reproduce results identifying all common modules spanning more than 2 SSEs, in a few hours instead of weeks. The efficiency of our new algorithm is demonstrated by computing the maximal modules between any pair of entire RNA in the non-redundant corpus of known RNA 3D structures. We observe that the biggest modules our method uncovers compose large shared sub-structure spanning hundreds of nucleotides and base pairs between the ribosomes of Thermus thermophilus, Escherichia Coli, and Pseudomonas aeruginosa.


Assuntos
Conformação de Ácido Nucleico , RNA/química , Algoritmos , Pareamento de Bases , Biologia Computacional/métodos
3.
Nucleic Acids Res ; 46(8): 3841-3851, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608773

RESUMO

The wealth of the combinatorics of nucleotide base pairs enables RNA molecules to assemble into sophisticated interaction networks, which are used to create complex 3D substructures. These interaction networks are essential to shape the 3D architecture of the molecule, and also to provide the key elements to carry molecular functions such as protein or ligand binding. They are made of organised sets of long-range tertiary interactions which connect distinct secondary structure elements in 3D structures. Here, we present a de novo data-driven approach to extract automatically from large data sets of full RNA 3D structures the recurrent interaction networks (RINs). Our methodology enables us for the first time to detect the interaction networks connecting distinct components of the RNA structure, highlighting their diversity and conservation through non-related functional RNAs. We use a graphical model to perform pairwise comparisons of all RNA structures available and to extract RINs and modules. Our analysis yields a complete catalog of RNA 3D structures available in the Protein Data Bank and reveals the intricate hierarchical organization of the RNA interaction networks and modules. We assembled our results in an online database (http://carnaval.lri.fr) which will be regularly updated. Within the site, a tool allows users with a novel RNA structure to detect automatically whether the novel structure contains previously observed RINs.


Assuntos
Bases de Dados de Ácidos Nucleicos/estatística & dados numéricos , Conformação de Ácido Nucleico , RNA/química , Algoritmos , Pareamento de Bases , Biologia Computacional/métodos , Mineração de Dados/métodos , Bases de Dados de Proteínas/estatística & dados numéricos , Modelos Moleculares , Dobramento de RNA , Software
4.
J Comput Biol ; 27(3): 390-402, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32160035

RESUMO

The growing number of RNA-mediated regulation mechanisms identified in the past decades suggests a widespread impact of RNA-RNA interactions. The efficiency of the regulation relies on highly specific and coordinated interactions while simultaneously repressing the formation of opportunistic complexes. However, the analysis of RNA interactomes is highly challenging because of the large number of potential partners, discrepancy of the size of RNA families, and the inherent noise in interaction predictions. We designed a recursive two-step cross-validation pipeline to capture the specificity of noncoding RNA (ncRNA) messenger RNA (mRNA) interactomes. Our method has been designed to detect significant loss or gain of specificity between ncRNA-mRNA interaction profiles. Applied to small nucleolar RNA-mRNA in Saccharomyces cerevisiae, our results suggest the existence of a repression of ncRNA affinities with mRNAs and thus the existence of an evolutionary pressure leveling down such interactions.


Assuntos
Biologia Computacional/métodos , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Saccharomyces cerevisiae/genética , Bases de Dados Genéticas , Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , RNA Fúngico/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa