RESUMO
In January 2021, Senegal reported the emergence of highly pathogenic avian influenza virus A(H5N1), which was detected on a poultry farm in Thies, Senegal, and in great white pelicans in the Djoudj National Bird Sanctuary. We report evidence of new transcontinental spread of H5N1 from Europe toward Africa.
Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Influenza Humana , Animais , Aves , Humanos , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/epidemiologia , Influenza Humana/epidemiologia , Aves Domésticas , Senegal/epidemiologiaRESUMO
SARS-CoV-2 has demonstrated the ability to infect a wide range of animal species. Here, we investigated SARS-CoV-2 infection in livestock species in Oman and provided serological evidence of SARS-CoV-2 infection in cattle, sheep, goats, and dromedary camel using the surrogate virus neutralization and plaque reduction neutralization tests. To better understand the extent of SARS-CoV-2 infection in animals and associated risks, "One Health" epidemiological investigations targeting animals exposed to COVID-19 human cases should be implemented with integrated data analysis of the epidemiologically linked human and animal cases.
Assuntos
COVID-19 , Bovinos , Humanos , Animais , Ovinos , COVID-19/epidemiologia , COVID-19/veterinária , Omã/epidemiologia , Camelus , SARS-CoV-2 , Análise de Dados , CabrasRESUMO
African swine fever (ASF) is a highly contagious and severe viral hemorrhagic disease in domestic and wild pigs. ASF seriously affects the global swine industry as the mortality rate can reach 100% with highly virulent strains. In 2007, ASF was introduced into the Caucasus and spread to Russia and later into other European and Asian countries. This study reported the first whole-genome sequence (WGS) of the ASF virus (ASFV) that was detected in a Mongolian wild boar. This sequence was then compared to other WGS samples from Asia and Europe. Results show that the ASFV Genotype II from Mongolia is similar to the Asian Genotype II WGS. However, there were three nucleotide differences found between the Asian and European genome sequences, two of which were non-synonymous. It was also observed that the European Genotype II ASFV WGS was more diverse than that of the Asian counterparts. The study demonstrates that the ASFV Genotype II variants found in wild boars and domestic pigs are highly similar, suggesting these animals might have had direct or indirect contact, potentially through outdoor animal breeding. In conclusion, this study provides a WGS and mutation spectrum of the ASFV Genotype II WGS in Asia and Europe and thus provides important insights into the origin and spread of ASFV in Mongolia.
RESUMO
A workforce with the adequate field epidemiology knowledge, skills and abilities is the foundation of a strong and effective animal health system. Field epidemiology training is conducted in several countries to meet the increased global demand for such a workforce. However, core competencies for field veterinary epidemiology have not been identified and agreed upon globally, leading to the development of different training curricula. Having a set of agreed core competencies can harmonize field veterinary epidemiology training. The Food and Agriculture Organization of the United Nations (FAO) initiated a collective, iterative, and participative process to achieve this and organized two expert consultative workshops in 2018 to develop core competencies for field veterinary epidemiology at the frontline and intermediate levels. Based on these expert discussions, 13 competencies were identified for the frontline and intermediate levels. These competencies were organized into three domains: epidemiological surveillance and studies; field investigation, preparedness and response; and One Health, communication, ethics and professionalism. These competencies can be used to facilitate the development of field epidemiology training curricula for veterinarians, adapted to country training needs, or customized for training other close disciplines. The competencies can also be useful for mentors and employers to monitor and evaluate the progress of their mentees, or to guide the selection process during the recruitment of new staff.
RESUMO
Anthrax is hyper-endemic in West Africa affecting wildlife, livestock and humans. Prediction is difficult due to the lack of accurate outbreak data. However, predicting the risk of infection is important for public health, wildlife conservation and livestock economies. In this study, the seasonality of anthrax outbreaks in West Africa was investigated using climate time series and ecological niche modeling to identify environmental factors related to anthrax occurrence, develop geospatial risk maps and identify seasonal patterns. Outbreak data in livestock, wildlife and humans between 2010 and 2018 were compiled from different sources and analyzed against monthly rates of change in precipitation, normalized difference vegetation index (NDVI) and land surface temperature. Maximum Entropy was used to predict and map the environmental suitability of anthrax occurrence. The findings showed that: (i) Anthrax outbreaks significantly (99%) increased with incremental changes in monthly precipitation and vegetation growth and decremental changes in monthly temperature during January-June. This explains the occurrence of the anthrax peak during the early wet season in West Africa. (ii) Livestock density, precipitation seasonality, NDVI and alkaline soils were the main predictors of anthrax suitability. (iii) Our approach optimized the use of limited and heterogeneous datasets and ecological niche modeling, demonstrating the value of integrated disease notification data and outbreak reports to generate risk maps. Our findings can inform public, animal and environmental health and enhance national and regional One Health disease control strategies.
RESUMO
Despite declaration as a national priority disease, dog rabies remains endemic in Liberia, with surveillance systems and disease control activities still developing. The objective of these initial efforts was to establish animal rabies diagnostics, foster collaboration between all rabies control stakeholders, and develop a short-term action plan with estimated costs for rabies control and elimination in Liberia. Four rabies diagnostic tests, the direct fluorescent antibody (DFA) test, the direct immunohistochemical test (dRIT), the reverse transcriptase polymerase chain reaction (RT-PCR) assay and the rapid immunochromatographic diagnostic test (RIDT), were implemented at the Central Veterinary Laboratory (CVL) in Monrovia between July 2017 and February 2018. Seven samples (n=7) out of eight suspected animals were confirmed positive for rabies lyssavirus, and molecular analyses revealed that all isolates belonged to the Africa 2 lineage, subgroup H. During a comprehensive in-country One Health rabies stakeholder meeting in 2018, a practical workplan, a short-term action plan and an accurately costed mass dog vaccination strategy were developed. Liberia is currently at stage 1.5/5 of the Stepwise Approach towards Rabies Elimination (SARE) tool, which corresponds with countries that are scaling up local-level interventions (e.g. dog vaccination campaigns) to the national level. Overall an estimated 5.3 - 8 million USD invested over 13 years is needed to eliminate rabies in Liberia by 2030. Liberia still has a long road to become free from dog-rabies. However, the dialogue between all relevant stakeholders took place, and disease surveillance considerably improved through implementing rabies diagnosis at the CVL. The joint efforts of diverse national and international stakeholders laid important foundations to achieve the goal of zero dog-mediated human rabies deaths by 2030.
Assuntos
Testes Diagnósticos de Rotina/veterinária , Vacina Antirrábica/administração & dosagem , Raiva/diagnóstico , Raiva/prevenção & controle , Animais , DNA Viral , Testes Diagnósticos de Rotina/métodos , Doenças do Cão/diagnóstico , Doenças do Cão/prevenção & controle , Doenças do Cão/virologia , Cães/virologia , Feminino , Humanos , Libéria/epidemiologia , Masculino , Vacinação em Massa/veterinária , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/veterinária , Filogenia , Reação em Cadeia da Polimerase , Vacina Antirrábica/economia , Vírus da Raiva/genética , Vírus da Raiva/isolamento & purificaçãoRESUMO
To achieve the goal of eliminating dog-mediated human rabies deaths by 2030, many African countries have agreed to list rabies as a priority zoonotic disease and to undertake both short and long-term control programs. Within this context, reliable local diagnosis is essential for the success of field surveillance systems. However, a harmonized, sustainable and supportive diagnostic offer has yet to be achieved in the continent. We herewith describe the organization and outcome of a proficiency test (PT) for the post-mortem diagnosis of rabies in animals, involving thirteen veterinary laboratories and one public health laboratory in Africa. Participants were invited to assess both the performance of the Direct Fluorescent Antibody (DFA) test and of a conventional RT-PCR. From the submitted results, while thirteen laboratories proved to be able to test the samples through DFA test, eleven performed the RT-PCR method; ten applied both techniques. Of note, the number of laboratories able to apply rabies RT-PCR had increased from four to ten after the exercise. Importantly, results showed a higher proficiency in applying the molecular test compared to the DFA test (concordance, sensitivity and specificity: 98.2%, 96.97% and 100% for RT-PCR; 87.69%, 89.23% and 86.15% for DFA test), indicating the feasibility of molecular methods to diagnose animal pathogens in Africa. Another positive outcome of this approach was that negative and positive controls were made available for further in-house validation of new techniques; in addition, a detailed questionnaire was provided to collect useful and relevant information on the diagnostic procedures and biosafety measures applied at laboratory level.
Assuntos
Doenças do Cão/diagnóstico , Laboratórios/normas , Raiva/veterinária , Medicina Veterinária/normas , África Subsaariana/epidemiologia , Animais , Doenças do Cão/epidemiologia , Cães , Humanos , Raiva/diagnóstico , Raiva/epidemiologia , ZoonosesRESUMO
Following repeated import bans imposed by Saudi Arabia on livestock originated from Somalia due to suspicion of Rift Valley fever (RVF) presence and the severe socio-economic consequences of this, it was imperative for the Somaliland government to carry out surveillance activities in order to determine the status of transboundary diseases in its territory. A GIS computer software (Arcview) was used to overcome the lack of lists of sampling sites due to the high mobility of pastoral nomadic herds in the study area. This method proved very convenient and flexible for the random selection of sampling sites and thus the compliance with the requirements by the World Organisation for Animal Health (OIE) for statistically valid methods if the surveillance outcome is to meet international recognition and acceptance. Screening in Somaliland in 2001 and in Puntland in 2003 which targeted mainly sheep and goats aged 1-2 years (97% of surveyed animals) revealed no signs compatible with the disease but an overall sero-prevalence of 2+/-0.02% (90/4570) and 5+/-0.3% (206/4050), respectively. The spatial distribution showed clusters of high sero-prevalence located mostly in the Nugal Valley. This trend was confirmed by the follow-up survey implemented in Somaliland in 2004 with a herd prevalence of 80+/-6% and a within-herd prevalence up to 50% located again in the Nugal Valley. This result suggests the maintenance and increase of RVF virus activity in the valley. In addition conditions favourable to the breeding and survival of the vector population and the high density of livestock make the Nugal Valley an area of high risk for a RVF outbreak where sentinel herds will be placed.