Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biophys J ; 113(12): 2787-2795, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262371

RESUMO

Eukaryotic cells undergo shape changes during their division and growth. This involves flow of material both in the cell membrane and in the cytoskeletal layer beneath the membrane. Such flows result in redistribution of phospholipid at the cell surface and actomyosin in the cortex. Here we focus on the growth of the intercellular surface during cell division in a Caenorhabditis elegans embryo. The growth of this surface leads to the formation of a double-layer of separating membranes between the two daughter cells. The division plane typically has a circular periphery and the growth starts from the periphery as a membrane invagination, which grows radially inward like the shutter of a camera. The growth is typically not concentric, in the sense that the closing internal ring is located off-center. Cytoskeletal proteins anillin and septin have been found to be responsible for initiating and maintaining the asymmetry of ring closure but the role of possible asymmetry in the material flow into the growing membrane has not been investigated yet. Motivated by experimental evidence of such flow asymmetry, here we explore the patterns of internal ring closure in the growing membrane in response to asymmetric boundary fluxes. We highlight the importance of the flow asymmetry by showing that many of the asymmetric growth patterns observed experimentally can be reproduced by our model, which incorporates the viscous nature of the membrane and contractility of the associated cortex.


Assuntos
Membrana Celular/metabolismo , Citocinese , Movimento , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Modelos Biológicos
2.
PLoS Comput Biol ; 11(12): e1004670, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26691341

RESUMO

Coherent angular rotation of epithelial cells is thought to contribute to many vital physiological processes including tissue morphogenesis and glandular formation. However, factors regulating this motion, and the implications of this motion if perturbed, remain incompletely understood. In the current study, we address these questions using a cell-center based model in which cells are polarized, motile, and interact with the neighboring cells via harmonic forces. We demonstrate that, a simple evolution rule in which the polarization of any cell tends to orient with its velocity vector can induce coherent motion in geometrically confined environments. In addition to recapitulating coherent rotational motion observed in experiments, our results also show the presence of radial movements and tissue behavior that can vary between solid-like and fluid-like. We show that the pattern of coherent motion is dictated by the combination of different physical parameters including number density, cell motility, system size, bulk cell stiffness and stiffness of cell-cell adhesions. We further observe that perturbations in the form of cell division can induce a reversal in the direction of motion when cell division occurs synchronously. Moreover, when the confinement is removed, we see that the existing coherent motion leads to cell scattering, with bulk cell stiffness and stiffness of cell-cell contacts dictating the invasion pattern. In summary, our study provides an in-depth understanding of the origin of coherent rotation in confined tissues, and extracts useful insights into the influence of various physical parameters on the pattern of such movements.


Assuntos
Agregação Celular/fisiologia , Comunicação Celular/fisiologia , Movimento Celular/fisiologia , Células Epiteliais/fisiologia , Adesões Focais/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Elasticidade/fisiologia , Células Epiteliais/citologia , Humanos , Mecanotransdução Celular/fisiologia , Invasividade Neoplásica/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa