Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 12: 47, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24923837

RESUMO

BACKGROUND: In the adult central nervous system, axonal regeneration is abortive. Regulators of microtubule dynamics have emerged as attractive targets to promote axonal growth following injury as microtubule organization is pivotal for growth cone formation. In this study, we used conditioned neurons with high regenerative capacity to further dissect cytoskeletal mechanisms that might be involved in the gain of intrinsic axon growth capacity. RESULTS: Following a phospho-site broad signaling pathway screen, we found that in conditioned neurons with high regenerative capacity, decreased glycogen synthase kinase 3ß (GSK3ß) activity and increased microtubule growth speed in the growth cone were present. To investigate the importance of GSK3ß regulation during axonal regeneration in vivo, we used three genetic mouse models with high, intermediate or no GSK3ß activity in neurons. Following spinal cord injury, reduced GSK3ß levels or complete neuronal deletion of GSK3ß led to increased growth cone microtubule growth speed and promoted axon regeneration. While several microtubule-interacting proteins are GSK3ß substrates, phospho-mimetic collapsin response mediator protein 2 (T/D-CRMP-2) was sufficient to decrease microtubule growth speed and neurite outgrowth of conditioned neurons and of GSK3ß-depleted neurons, prevailing over the effect of decreased levels of phosphorylated microtubule-associated protein 1B (MAP1B) and through a mechanism unrelated to decreased levels of phosphorylated cytoplasmic linker associated protein 2 (CLASP2). In addition, phospho-resistant T/A-CRMP-2 counteracted the inhibitory myelin effect on neurite growth, further supporting the GSK3ß-CRMP-2 relevance during axon regeneration. CONCLUSIONS: Our work shows that increased microtubule growth speed in the growth cone is present in conditions of increased axonal growth, and is achieved following inactivation of the GSK3ß-CRMP-2 pathway, enhancing axon regeneration through the glial scar. In this context, our results support that a precise control of microtubule dynamics, specifically in the growth cone, is required to optimize axon regrowth.


Assuntos
Axônios/fisiologia , Quinase 3 da Glicogênio Sintase/genética , Cones de Crescimento/metabolismo , Microtúbulos/metabolismo , Regeneração , Animais , Feminino , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fosforilação , Ratos , Ratos Wistar
2.
Biochim Biophys Acta ; 1822(9): 1501-8, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22659211

RESUMO

Ether-phospholipids represent an important group of phospholipids characterized by an alkyl or an alkenyl bond at the sn-1 position of the glycerol backbone. Plasmalogens are the most abundant form of alkenyl-glycerophospholipids, and their synthesis requires functional peroxisomes. Defects in the biosynthesis of plasmalogens are the biochemical hallmark of the human peroxisomal disorder Rhizomelic Chondrodysplasia Punctata (RCDP), which is characterized by defects in eye, bone and nervous tissue. The generation and characterization of mouse models with defects in plasmalogen levels have significantly advanced our understanding of the role and importance of plasmalogens as well as pathogenetic mechanisms underlying RCDP. A review of the current mouse models and the description of the combined knowledge gathered from the histopathological and biochemical studies is presented and discussed. Further characterization of the role and functions of plasmalogens will contribute to the elucidation of disease pathogenesis in peroxisomal and non-peroxisomal disorders. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.


Assuntos
Condrodisplasia Punctata Rizomélica/metabolismo , Modelos Animais de Doenças , Plasmalogênios/fisiologia , Animais , Condrodisplasia Punctata Rizomélica/genética , Condrodisplasia Punctata Rizomélica/patologia , Glucosamina 6-Fosfato N-Acetiltransferase/deficiência , Glucosamina 6-Fosfato N-Acetiltransferase/genética , Humanos , Camundongos , Camundongos Knockout , Receptor 2 de Sinal de Orientação para Peroxissomos , Plasmalogênios/metabolismo , Receptores Citoplasmáticos e Nucleares/deficiência , Receptores Citoplasmáticos e Nucleares/genética
3.
Mol Neurobiol ; 53(2): 1052-1064, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25579385

RESUMO

Lack of axon regeneration following spinal cord injury has been mainly ascribed to the inhibitory environment of the injury site, i.e., to chondroitin sulfate proteoglycans (CSPGs) and myelin-associated inhibitors (MAIs). Here, we used shiverer (shi) mice to assess axon regeneration following spinal cord injury in the presence of MAIs and CSPG but in the absence of compact myelin. Although in vitro shi neurons displayed a similar intrinsic neurite outgrowth to wild-type neurons, in vivo, shi fibers had increased regenerative capacity, suggesting that the wild-type spinal cord contains additional inhibitors besides MAIs and CSPG. Our data show that besides myelin protein, myelin lipids are highly inhibitory for neurite outgrowth and suggest that this inhibitory effect is released in the shi spinal cord given its decreased lipid content. Specifically, we identified cholesterol and sphingomyelin as novel myelin-associated inhibitors that operate through a Rho-dependent mechanism and have inhibitory activity in multiple neuron types. We further demonstrated the inhibitory action of myelin lipids in vivo, by showing that delivery of 2-hydroxypropyl-ß-cyclodextrin, a drug that reduces the levels of lipids specifically in the injury site, leads to increased axon regeneration of wild-type (WT) dorsal column axons following spinal cord injury. In summary, our work shows that myelin lipids are important modulators of axon regeneration that should be considered together with protein MAIs as critical targets in strategies aiming at improving axonal growth following injury.


Assuntos
Axônios/patologia , Lipídeos/química , Bainha de Mielina/metabolismo , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/terapia , Medula Espinal/patologia , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Colesterol/metabolismo , Camundongos Endogâmicos C57BL , Bainha de Mielina/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Esfingomielinas/metabolismo , Medula Espinal/efeitos dos fármacos , beta-Ciclodextrinas/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
4.
PLoS One ; 6(12): e28539, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22163031

RESUMO

A deficiency of plasmalogens, caused by impaired peroxisomal metabolism affects normal development and multiple organs in adulthood. Treatment options aimed at restoring plasmalogen levels may be relevant for the therapy of peroxisomal and non-peroxisomal disorders. In this study we determined the in vivo efficacy of an alkyl glycerol (AG), namely, 1-O-octadecyl-rac-glycerol, as a therapeutic agent for defects in plasmalogen synthesis. To achieve this, Pex7 knockout mice, a mouse model for Rhizomelic Chondrodysplasia Punctata type 1 characterized by the absence of plasmalogens, and WT mice were fed a control diet or a diet containing 2% alkyl-glycerol. Plasmalogen levels were measured in target organs and the biochemical data were correlated with the histological analysis of affected organs. Plasmalogen levels in all peripheral tissues of Pex7 KO mice fed the AG diet for 2 months normalized to the levels of AG fed WT mice. In nervous tissues of Pex7 KO mice fed the AG-diet, plasmalogen levels were significantly increased compared to control fed KO mice. Histological analysis of target organs revealed that the AG-diet was able to stop the progression of the pathology in testis, adipose tissue and the Harderian gland. Interestingly, the latter tissues are characterized by the presence of lipid droplets which were absent or reduced in size and number when ether-phospholipids are lacking, but which can be restored with the AAG treatment. Furthermore, nerve conduction in peripheral nerves was improved. When given prior to the occurrence of major pathological changes, the AG-diet prevented or ameliorated the pathology observed in Pex7 KO mice depending on the degree of plasmalogen restoration. This study provides evidence of the beneficial effects of treating a plasmalogen deficiency with alkyl-glycerol.


Assuntos
Glicerol/farmacologia , Éteres Fosfolipídicos/metabolismo , Plasmalogênios/metabolismo , Ração Animal , Animais , Linhagem Celular , Eletrofisiologia/métodos , Genótipo , Lipídeos/química , Camundongos , Camundongos Knockout , Tecido Nervoso/metabolismo , Condução Nervosa , Receptor 2 de Sinal de Orientação para Peroxissomos , Fosfolipídeos/química , Receptores Citoplasmáticos e Nucleares/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa