Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167327, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38945455

RESUMO

The prevalence of cardiovascular diseases (CVDs) is increasing in the last decades, even is the main cause of death in first world countries being atherosclerosis one of the principal triggers. Therefore, there is an urgent need to decipher the underlying mechanisms involved in atherosclerosis progression. In this respect, microRNAs dysregulation is frequently involved in the progression of multiple diseases including CVDs. Our aim was to demonstrate that let-7d-5p unbalance could contribute to the pathophysiology of atherosclerosis and serve as a potential diagnostic biomarker. We evaluated let-7d-5p levels in vascular biopsies and exosome-enriched extracellular vesicles (EVs) from patients with carotid atherosclerosis and healthy donors. Moreover, we overexpressed let-7d-5p in vitro in vascular smooth muscle cells (VSMCs) to decipher the targets and the underlying mechanisms regulated by let-7d-5p in atherosclerosis. Our results demonstrate that let-7d-5p was significantly upregulated in carotid plaques from overweight patients with carotid atherosclerosis. Moreover, in EVs isolated from plasma, we found that let-7d-5p levels were increased in carotid atherosclerosis patients compared to control subjects specially in overweight patients. Receiver Operating Characteristic (ROC) analyses confirmed its utility as a diagnostic biomarker for atherosclerosis. In VSMCs, we demonstrated that increased let-7d-5p levels impairs cell proliferation and could serve as a protective mechanism against inflammation by impairing NF-κB pathway without affecting insulin resistance. In summary, our results highlight the role of let-7d-5p as a potential therapeutic target for atherosclerosis since its overexpression induce a decrease in inflammation and VSMCs proliferation, and also, as a novel non-invasive diagnostic biomarker for atherosclerosis in overweight patients.


Assuntos
Aterosclerose , Proliferação de Células , MicroRNAs , Músculo Liso Vascular , Miócitos de Músculo Liso , NF-kappa B , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Masculino , Feminino , Aterosclerose/metabolismo , Aterosclerose/patologia , Aterosclerose/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Pessoa de Meia-Idade , Idoso , Inflamação/metabolismo , Inflamação/patologia , Biomarcadores/metabolismo , Transdução de Sinais , Progressão da Doença , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa