Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Mol Cell ; 76(5): 784-796.e6, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31588022

RESUMO

Oligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation. We find that dinucleotides act as potent stimulators of mitochondrial transcription initiation in vitro. Our data demonstrate that increased levels of dinucleotides can be used to initiate transcription, leading to an increase in transcription levels from both mitochondrial promoters and other, nonspecific sequence elements in mitochondrial DNA. Efficient RNA turnover by REXO2 is thus required to maintain promoter specificity and proper regulation of transcription in mammalian mitochondria.


Assuntos
Proteínas 14-3-3/metabolismo , Biomarcadores Tumorais/metabolismo , Exorribonucleases/metabolismo , Mitocôndrias/enzimologia , Oligonucleotídeos/metabolismo , Regiões Promotoras Genéticas , Estabilidade de RNA , RNA Mitocondrial/metabolismo , Proteínas 14-3-3/deficiência , Proteínas 14-3-3/genética , Animais , Biomarcadores Tumorais/genética , Exorribonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mitocondrial/genética , Células Sf9 , Spodoptera
2.
Mol Cell ; 59(2): 258-69, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186291

RESUMO

Notwithstanding numerous published structures of RNA Polymerase II (Pol II), structural details of Pol II engaging a complete nucleic acid scaffold have been lacking. Here, we report the structures of TFIIF-stabilized transcribing Pol II complexes, revealing the upstream duplex and full transcription bubble. The upstream duplex lies over a wedge-shaped loop from Rpb2 that engages its minor groove, providing part of the structural framework for DNA tracking during elongation. At the upstream transcription bubble fork, rudder and fork loop 1 residues spatially coordinate strand annealing and the nascent RNA transcript. At the downstream fork, a network of Pol II interactions with the non-template strand forms a rigid domain with the trigger loop (TL), allowing visualization of its open state. Overall, our observations suggest that "open/closed" conformational transitions of the TL may be linked to interactions with the non-template strand, possibly in a synchronized ratcheting manner conducive to polymerase translocation.


Assuntos
RNA Polimerase II/química , Proteínas de Saccharomyces cerevisiae/química , Sequência de Bases , Cristalografia por Raios X , DNA Fúngico/química , DNA Fúngico/genética , DNA Fúngico/metabolismo , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Subunidades Proteicas , RNA Polimerase II/metabolismo , RNA Fúngico/química , RNA Fúngico/genética , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Eletricidade Estática , Transcrição Gênica
3.
Nucleic Acids Res ; 47(17): 9386-9399, 2019 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-31396629

RESUMO

In all biological systems, RNAs are associated with RNA-binding proteins (RBPs), forming complexes that control gene regulatory mechanisms, from RNA synthesis to decay. In mammalian mitochondria, post-transcriptional regulation of gene expression is conducted by mitochondrial RBPs (mt-RBPs) at various stages of mt-RNA metabolism, including polycistronic transcript production, its processing into individual transcripts, mt-RNA modifications, stability, translation and degradation. To date, only a handful of mt-RBPs have been characterized. Here, we describe a putative human mitochondrial protein, C6orf203, that contains an S4-like domain-an evolutionarily conserved RNA-binding domain previously identified in proteins involved in translation. Our data show C6orf203 to bind highly structured RNA in vitro and associate with the mitoribosomal large subunit in HEK293T cells. Knockout of C6orf203 leads to a decrease in mitochondrial translation and consequent OXPHOS deficiency, without affecting mitochondrial RNA levels. Although mitoribosome stability is not affected in C6orf203-depleted cells, mitoribosome profiling analysis revealed a global disruption of the association of mt-mRNAs with the mitoribosome, suggesting that C6orf203 may be required for the proper maturation and functioning of the mitoribosome. We therefore propose C6orf203 to be a novel RNA-binding protein involved in mitochondrial translation, expanding the repertoire of factors engaged in this process.


Assuntos
Mitocôndrias/genética , Proteínas Mitocondriais/biossíntese , RNA Mitocondrial/genética , Proteínas de Ligação a RNA/genética , Animais , Células HEK293 , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/fisiologia , Ribossomos Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Ribossômico/genética , Proteínas de Ligação a RNA/fisiologia
4.
Nucleic Acids Res ; 44(14): 6868-82, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27353330

RESUMO

LRPPRC is a protein that has attracted interest both for its role in post-transcriptional regulation of mitochondrial gene expression and more recently because numerous mutated variants have been characterized as causing severe infantile mitochondrial neurodegeneration. LRPPRC belongs to the pentatricopeptide repeat (PPR) protein family, originally defined by their RNA binding capacity, and forms a complex with SLIRP that harbours an RNA recognition motif (RRM) domain. We show here that LRPPRC displays a broad and strong RNA binding capacity in vitro in contrast to SLIRP that associates only weakly with RNA. The LRPPRC-SLIRP complex comprises a hetero-dimer via interactions by polar amino acids in the single RRM domain of SLIRP and three neighbouring PPR motifs in the second quarter of LRPPRC, which critically contribute to the LRPPRC-SLIRP binding interface to enhance its stability. Unexpectedly, specific amino acids at this interface are located within the PPRs of LRPPRC at positions predicted to interact with RNA and within the RNP1 motif of SLIRP's RRM domain. Our findings thus unexpectedly establish that despite the prediction that these residues in LRPPRC and SLIRP should bind RNA, they are instead used to facilitate protein-protein interactions, enabling the formation of a stable complex between these two proteins.


Assuntos
Proteínas de Neoplasias/metabolismo , Motivo de Reconhecimento de RNA , Proteínas de Ligação a RNA/metabolismo , Sequências Repetitivas de Aminoácidos , Sequência de Aminoácidos , Aminoácidos/genética , Sequência Conservada , Reagentes de Ligações Cruzadas/metabolismo , Células HEK293 , Humanos , Modelos Biológicos , Mutação/genética , Proteínas de Neoplasias/química , Ligação Proteica , Multimerização Proteica , Estabilidade Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/química
5.
Proc Natl Acad Sci U S A ; 112(36): 11288-93, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26305956

RESUMO

Mammalian mitochondrial DNA (mtDNA) is packaged by mitochondrial transcription factor A (TFAM) into mitochondrial nucleoids that are of key importance in controlling the transmission and expression of mtDNA. Nucleoid ultrastructure is poorly defined, and therefore we used a combination of biochemistry, superresolution microscopy, and electron microscopy to show that mitochondrial nucleoids have an irregular ellipsoidal shape and typically contain a single copy of mtDNA. Rotary shadowing electron microscopy revealed that nucleoid formation in vitro is a multistep process initiated by TFAM aggregation and cross-strand binding. Superresolution microscopy of cultivated cells showed that increased mtDNA copy number increases nucleoid numbers without altering their sizes. Electron cryo-tomography visualized nucleoids at high resolution in isolated mammalian mitochondria and confirmed the sizes observed by superresolution microscopy of cell lines. We conclude that the fundamental organizational unit of the mitochondrial nucleoid is a single copy of mtDNA compacted by TFAM, and we suggest a packaging mechanism.


Assuntos
DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Mitocôndrias/metabolismo , Nucleoproteínas/metabolismo , Animais , Células Cultivadas , Microscopia Crioeletrônica , DNA Mitocondrial/genética , DNA Mitocondrial/ultraestrutura , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Tomografia com Microscopia Eletrônica , Genoma Mitocondrial/genética , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/ultraestrutura , Camundongos , Microscopia Confocal , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Mutação , Nucleoproteínas/genética , Nucleoproteínas/ultraestrutura , Ligação Proteica
6.
PLoS Genet ; 11(8): e1005423, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26247782

RESUMO

We have studied the in vivo role of SLIRP in regulation of mitochondrial DNA (mtDNA) gene expression and show here that it stabilizes its interacting partner protein LRPPRC by protecting it from degradation. Although SLIRP is completely dependent on LRPPRC for its stability, reduced levels of LRPPRC persist in the absence of SLIRP in vivo. Surprisingly, Slirp knockout mice are apparently healthy and only display a minor weight loss, despite a 50-70% reduction in the steady-state levels of mtDNA-encoded mRNAs. In contrast to LRPPRC, SLIRP is dispensable for polyadenylation of mtDNA-encoded mRNAs. Instead, deep RNA sequencing (RNAseq) of mitochondrial ribosomal fractions and additional molecular analyses show that SLIRP is required for proper association of mRNAs to the mitochondrial ribosome and efficient translation. Our findings thus establish distinct functions for SLIRP and LRPPRC within the LRPPRC-SLIRP complex, with a novel role for SLIRP in mitochondrial translation. Very surprisingly, our results also demonstrate that mammalian mitochondria have a great excess of transcripts under basal physiological conditions in vivo.


Assuntos
Proteínas Mitocondriais/biossíntese , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a RNA/fisiologia , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Poliadenilação , Biossíntese de Proteínas , Proteólise , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/metabolismo
7.
PLoS Genet ; 10(2): e1004110, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24516400

RESUMO

Biogenesis of mammalian mitochondrial ribosomes requires a concerted maturation of both the small (SSU) and large subunit (LSU). We demonstrate here that the m(5)C methyltransferase NSUN4, which forms a complex with MTERF4, is essential in mitochondrial ribosomal biogenesis as mitochondrial translation is abolished in conditional Nsun4 mouse knockouts. Deep sequencing of bisulfite-treated RNA shows that NSUN4 methylates cytosine 911 in 12S rRNA (m5C911) of the SSU. Surprisingly, NSUN4 does not need MTERF4 to generate this modification. Instead, the NSUN4/MTERF4 complex is required to assemble the SSU and LSU to form a monosome. NSUN4 is thus a dual function protein, which on the one hand is needed for 12S rRNA methylation and, on the other hand interacts with MTERF4 to facilitate monosome assembly. The presented data suggest that NSUN4 has a key role in controlling a final step in ribosome biogenesis to ensure that only the mature SSU and LSU are assembled.


Assuntos
Proteínas de Transporte/genética , Metiltransferases/genética , Mitocôndrias/genética , RNA Ribossômico/genética , Ribossomos/genética , Animais , Proteínas de Transporte/metabolismo , Metilação de DNA/genética , Metiltransferases/metabolismo , Camundongos , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Ligação Proteica , RNA Ribossômico/biossíntese , Ribossomos/ultraestrutura , Fatores de Transcrição/metabolismo
8.
Hum Mol Genet ; 23(23): 6345-55, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25008111

RESUMO

The p.N478D missense mutation in human mitochondrial poly(A) polymerase (mtPAP) has previously been implicated in a form of spastic ataxia with optic atrophy. In this study, we have investigated fibroblast cell lines established from family members. The homozygous mutation resulted in the loss of polyadenylation of all mitochondrial transcripts assessed; however, oligoadenylation was retained. Interestingly, this had differential effects on transcript stability that were dependent on the particular species of transcript. These changes were accompanied by a severe loss of oxidative phosphorylation complexes I and IV, and perturbation of de novo mitochondrial protein synthesis. Decreases in transcript polyadenylation and in respiratory chain complexes were effectively rescued by overexpression of wild-type mtPAP. Both mutated and wild-type mtPAP localized to the mitochondrial RNA-processing granules thereby eliminating mislocalization as a cause of defective polyadenylation. In vitro polyadenylation assays revealed severely compromised activity by the mutated protein, which generated only short oligo(A) extensions on RNA substrates, irrespective of RNA secondary structure. The addition of LRPPRC/SLIRP, a mitochondrial RNA-binding complex, enhanced activity of the wild-type mtPAP resulting in increased overall tail length. The LRPPRC/SLIRP effect although present was less marked with mutated mtPAP, independent of RNA secondary structure. We conclude that (i) the polymerase activity of mtPAP can be modulated by the presence of LRPPRC/SLIRP, (ii) N478D mtPAP mutation decreases polymerase activity and (iii) the alteration in poly(A) length is sufficient to cause dysregulation of post-transcriptional expression and the pathogenic lack of respiratory chain complexes.


Assuntos
Proteínas Mitocondriais/metabolismo , Polinucleotídeo Adenililtransferase/metabolismo , RNA Mensageiro/metabolismo , Fibroblastos/metabolismo , Expressão Gênica , Humanos , Proteínas Mitocondriais/genética , Mutação , Proteínas de Neoplasias/metabolismo , Fosforilação Oxidativa , Polinucleotídeo Adenililtransferase/genética , Cultura Primária de Células , Processamento Pós-Transcricional do RNA , RNA Mitocondrial , Proteínas de Ligação a RNA/metabolismo
9.
PLoS Genet ; 9(1): e1003178, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23300484

RESUMO

Regulation of mitochondrial DNA (mtDNA) expression is critical for the control of oxidative phosphorylation in response to physiological demand, and this regulation is often impaired in disease and aging. We have previously shown that mitochondrial transcription termination factor 3 (MTERF3) is a key regulator that represses mtDNA transcription in the mouse, but its molecular mode of action has remained elusive. Based on the hypothesis that key regulatory mechanisms for mtDNA expression are conserved in metazoans, we analyzed Mterf3 knockout and knockdown flies. We demonstrate here that decreased expression of MTERF3 not only leads to activation of mtDNA transcription, but also impairs assembly of the large mitochondrial ribosomal subunit. This novel function of MTERF3 in mitochondrial ribosomal biogenesis is conserved in the mouse, thus we identify a novel and unexpected role for MTERF3 in coordinating the crosstalk between transcription and translation for the regulation of mammalian mtDNA gene expression.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/genética , Mitocôndrias , Proteínas Mitocondriais , Ribossomos , Animais , DNA Mitocondrial/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Invertebrados/genética , Invertebrados/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Ribossomos/genética , Ribossomos/metabolismo , Transcrição Gênica
10.
Proc Natl Acad Sci U S A ; 109(38): 15253-8, 2012 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-22949673

RESUMO

Proteins crucial for the respiratory chain are translated by the mitochondrial ribosome. Mitochondrial ribosome biogenesis is therefore critical for oxidative phosphorylation capacity and disturbances are known to cause human disease. This complex process is evolutionary conserved and involves several RNA processing and modification steps required for correct ribosomal RNA maturation. We recently showed that a member of the mitochondrial transcription termination factor (MTERF) family of proteins, MTERF4, recruits NSUN4, a 5-methylcytosine RNA methyltransferase, to the large ribosomal subunit in a process crucial for mitochondrial ribosome biogenesis. Here, we describe the 3D crystal structure of the human MTERF4-NSUN4 complex determined to 2.9 Å resolution. MTERF4 is composed of structurally repeated MTERF-motifs that form a nucleic acid binding domain. NSUN4 lacks an N- or C-terminal extension that is commonly used for RNA recognition by related RNA methyltransferases. Instead, NSUN4 binds to the C-terminus of MTERF4. A positively charged surface forms an RNA binding path from the concave to the convex side of MTERF4 and further along NSUN4 all of the way into the active site. This finding suggests that both subunits of the protein complex likely contribute to RNA recognition. The interface between MTERF4 and NSUN4 contains evolutionarily conserved polar and hydrophobic amino acids, and mutations that change these residues completely disrupt complex formation. This study provides a molecular explanation for MTERF4-dependent recruitment of NSUN4 to ribosomal RNA and suggests a unique mechanism by which other members of the large MTERF-family of proteins can regulate ribosomal biogenesis.


Assuntos
Proteínas de Transporte/química , Metiltransferases/química , Mitocôndrias/metabolismo , Ribossomos/química , Fatores de Transcrição/química , Domínio Catalítico , Biologia Computacional/métodos , Cristalografia por Raios X/métodos , Análise Mutacional de DNA , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína , RNA Ribossômico/química , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa