Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Genet ; 25(2): 147-52, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10835627

RESUMO

A broad understanding of the relationship between gene activation, pattern formation and morphogenesis will require adequate tools for three-dimensional and, perhaps four-dimensional, representation and analysis of molecular developmental processes. We present a novel, computer-based method for the 3D visualization of embryonic gene expression and morphological structures from serial sections. The information from these automatically aligned 3D reconstructions exceeds that from single-section and whole-mount visualizations of in situ hybridizations. In addition, these 3D models of gene-expression patterns can become a central component of a future developmental database designed for the collection and presentation of digitized, morphological and gene-expression data. This work is accompanied by a web site (http://www.univie.ac.at/GeneEMAC).


Assuntos
Simulação por Computador , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Anatomia Transversal/métodos , Animais , Automação , Bases de Dados Factuais , Desenvolvimento Embrionário e Fetal , Marcadores Genéticos/genética , Hibridização In Situ/métodos , Internet , Camundongos , Morfogênese/genética , Especificidade de Órgãos , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Software , Ativação Transcricional/genética
2.
Curr Opin Genet Dev ; 7(4): 507-12, 1997 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-9309182

RESUMO

Many important findings in the past year have helped to identify multiple cellular interactions and signals in vertebrates that govern induction of neuroectoderm, its patterning, neural tube formation, and the subsequent differentiation of neurons. For example, the neural inducers have been shown to function as inhibitors of BMP signaling, the roles of bone morphogenetic proteins and Sonic hedgehog during dorso-ventral specification of the neural tube have been further elucidated and the realization of a dorso-ventral inversion of the body axis contributed to a better understanding of evolutionarily related genes and functions between vertebrates and invertebrates.


Assuntos
Sistema Nervoso Central/embriologia , Morfogênese , Animais , Sistema Nervoso Central/citologia , Ectoderma , Mesoderma , Neurônios
3.
Dev Genes Evol ; 211(4): 198-217, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11455436

RESUMO

During vertebrate neural tube formation, the initially lateral borders between the neural and epidermal ectoderm fuse to form the definitive dorsal region of the embryo, while the initially dorsally located notochord-floor plate complex is being internalised. Along the definitive dorso-ventral body axis, one can distinguish an epaxial (dorsal to the notochord) and a hypaxial (ventral to the notochord) body region. The mesodermal somites on both sides of the notochord and neural tube give rise to the trunk skeleton and skeletal muscle. Muscle forms from the somite-derived dermomyotomes and myotomes that elongate dorsally and ventrally. Based on gene expression patterns and comparative embryology, it is proposed here that the epaxial (dermo)myotome region in amniote embryos is subdivided into a dorsalmost and a centrally intercalated subregion. The intercalated subregion abuts to the hypaxial (dermo)myotome region that elongates ventrally via the hypaxial somitic bud. The dorsalmost subregion elongates towards the dorsal neural tube and is proposed to derive from an epaxial somitic bud. The dorsalmost and hypaxial somite derivatives share specific gene expression patterns which are distinct from those of the intercalated somite derivatives. The intercalated somite derivatives develop adaxially, i.e. at the level of the notochord-floor plate complex. Thus, the dorsalmost and intercalated (dermo)myotome subregions may be influenced preferentially by signals from the dorsal neural tube and from the notochord-floor plate complex, respectively. These (dermo)myotome subregions are sharply delimited from each other by molecular boundary markers, including Engrailed and Wnts. It thus appears that the molecular network that polarises borders in Drosophila and vertebrate embryogenesis is redeployed during subregionalisation of the (dermo)myotome. It is proposed here that cells within the amniote (dermo)myotome establish polarised borders with organising capacity, and that the epaxial somitic bud represents a mirror-image duplication of the hypaxial somitic bud along such a border. The resulting epaxial-intercalated/adaxial-hypaxial regionalisation of somite derivatives is conserved in vertebrates although the differentiation of sclerotome and myotome starts heterochronically in embryos of different vertebrate groups.


Assuntos
Somitos , Coluna Vertebral/embriologia , Animais , Drosophila/embriologia , Desenvolvimento Embrionário , Músculos/embriologia
4.
Dev Genet ; 22(4): 359-73, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9664688

RESUMO

In open brain (opb) mutant embryos, developmental defects of the trunk spinal cord were spatially correlated with severe defects of the epaxial somite derivatives including sclerotomes, whereas hypaxial somite derivatives are much less affected. Later in development, the neural arches (epaxial sclerotome derivatives) formed but were severely disorganized, and also the distal ribs (hypaxial sclerotome derivatives) were malformed. Adjacent neural arches and vertebral bodies were often fused where joints should have formed suggesting defects of the intrasomitic borderlines. Moreover, neural arches frequently and ribs sometimes were split into halves at distinct levels along the dorso-ventral body axis. This suggests that 'resegmentation' of sclerotomes across the somite borders did not completely occur. These prominent skeletal defects were preceded by reduced expression of Pax1 along the intrasomitic borderlines, and incomplete maintenance of somite borders between central sclerotome moieties. The defects of the axial skeleton were accompanied by segmentation defects of the myotomes which were split distally, and also partly fused from adjacent segments across somite borders. The segmentation defects observed suggest that in opb mutants both segmental borderlines, the somite borders and the intrasomitic borderlines (fissures), were affected and behaved paradoxically.


Assuntos
Osso e Ossos/anormalidades , Transtornos Somatoformes/genética , Somitos/patologia , Animais , Desenvolvimento Embrionário e Fetal/fisiologia , Gânglios Espinais/anormalidades , Disco Intervertebral/anormalidades , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos
5.
Dev Dyn ; 210(3): 216-26, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9389448

RESUMO

The identification of the axial levels of metameric elements along the rostro-caudal axis of vertebrates until now was not possible before late, fetal development, when the vertebral anlagen first appear. We developed a new system for the exact axial identification of somites and their derivatives from early, embryonic stages of mouse development on (Theiler stages (TS) 15 to TS18-19). The initial axial identification of the somites was performed by relating them to the rostral-most two cervical spinal ganglia (SG), that exhibited characteristic morphologies (SG-C1: bar-like, SG-C2: triangular). At all stages of somitic development, the most prominent somite along the rostro-caudal axis correlated with the bar-like SG-C1, and, therefore, we named it the first cervical somite (SO-C1). The next step, the axial identification of the somites independently from the SG, was based on the observation that after in situ hybridization to Myf5, Pax3, Pax1, and Mox1 riboprobes, a distinct and characteristic morphology of the last occipital somite (SO-O5) and the first two cervical somites (SO-C1, SO-C2) can be observed. From TS15 on, these three somites formed a triad of the most prominent somites along the rostro-caudal axis. Also, the dermomyotomal, myotomal, and sclerotomal derivatives of this somite triad were the most prominent in later somitic development. Furthermore, SG-C1 and SG-C2 exhibited a transient bipartite anlagen in their early development, suggesting a "resegmentation" during SG formation. Later, when somites started to dissolve, the caudal moiety of the bar-like SG-C1 anlagen fused to the anlagen of SG-C2.


Assuntos
Somitos/fisiologia , Oxirredutases do Álcool/análise , Animais , Proteínas de Ligação a DNA/análise , Marcadores Genéticos , Hibridização In Situ , Camundongos , Proteínas Musculares/análise , Fator Regulador Miogênico 5 , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados , Gânglio Estrelado/embriologia , Transativadores/análise , Fatores de Transcrição/análise
6.
Development ; 122(1): 79-86, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8565855

RESUMO

The differentiation of somite derivatives is dependent on signals from neighboring axial structures. While ventral signals have been described extensively, little is known about dorsal influences, especially those from the dorsal half of the neural tube. Here, we describe severe phenotypic alterations in dorsal somite derivatives of homozygous open brain (opb) mutant mouse embryos which suggest crucial interactions between dorsal neural tube and dorsal somite regions. At Theiler stage 17 (day 10.5 post coitum) of development, strongly altered expression patterns of Pax3 and Myf5 were observed in dorsal somite regions indicating that the dorsal myotome and dermomyotome were not differentiating properly. These abnormalities were later followed by the absence of epaxial (dorsal) musculature; whereas, body wall and limb musculature formed normally. Analysis of Mox1 and Pax1 expression in opb embryos revealed additional defects in the differentiation of the dorsal sclerotome. The observed abnormalities coincided with defects in differentiation of dorsal neural tube regions. The implications of our findings for interactions between dorsal neural tube, surface ectoderm and dorsomedial somite regions in specifying epaxial musculature are discussed.


Assuntos
Encéfalo/embriologia , Músculo Esquelético/embriologia , Mutação , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/genética , Transativadores , Fatores de Transcrição , Animais , Proteínas de Ligação a DNA/genética , Feminino , Hibridização In Situ , Camundongos , Camundongos Mutantes , Proteínas Musculares/genética , Fator Regulador Miogênico 5 , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados , Fenótipo , Gravidez , Proteínas/genética , Medula Espinal/embriologia , Proteínas Wnt , Proteína Wnt3
7.
Genomics ; 57(2): 235-48, 1999 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10198163

RESUMO

The frizzled gene family is conserved from insects to mammals and codes for putative Wnt receptors that share a cysteine-rich extracellular domain and seven transmembrane domains. We previously identified a novel frizzled gene, FZD3, now renamed FZD9, in the Williams-Beuren syndrome (WBS) deletion region at chromosomal band 7q11.23 and showed that its product can interact with the Drosophila wingless protein. Here, we report the characterization of the mouse homolog Fzd9. The Fzd9 gene produces a 2.4-kb transcript encoding a 592-amino-acid protein with 95% identity to the human FZD9. Fzd9 was mapped to the conserved syntenic region on distal mouse chromosome 5. By RNA in situ hybridization studies of whole-mount embryos and sections we delineated the temporal and spatial expression patterns in the neural tube, trunk skeletal muscle precursors (myotomes), limb skeletal anlagen, craniofacial regions, and nephric ducts. In adult mouse tissue, the Fzd9 transcript is abundantly present in heart, brain, testis, and skeletal muscle. In testis, Fzd9 is expressed in all spermatogenic cell types. Immunohistochemical studies of cells transfected with a Fzd9 expression construct confirm that Fzd9 is a membrane protein. These results suggest potential Wnt ligands of Fzd9, a role of Fzd9 in skeletal muscle specification, and contributions of FZD9 to the WBS phenotype.


Assuntos
Receptores de Superfície Celular/genética , Receptores Acoplados a Proteínas G , Síndrome de Williams/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Membrana Celular/imunologia , Membrana Celular/metabolismo , Mapeamento Cromossômico , DNA Complementar/química , DNA Complementar/genética , Embrião de Mamíferos/metabolismo , Receptores Frizzled , Deleção de Genes , Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Hibridização In Situ , Masculino , Camundongos , Dados de Sequência Molecular , Sistema Nervoso/embriologia , Sistema Nervoso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/imunologia , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Somitos/metabolismo , Testículo/embriologia , Testículo/metabolismo , Distribuição Tecidual
8.
Dev Biol ; 182(2): 299-313, 1997 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-9070329

RESUMO

We examined the expression of Zic1, Zic2, and Zic3 genes in the mouse embryo by means of in situ hybridization. Zic genes were found as a group of genes coding for zinc finger proteins that are expressed in a restricted manner in the adult mouse cerebellum. We showed that the genes are the vertebrate homologues of Drosophila odd-paired, which may play an essential role in parasegmental subdivision and in visceral mesoderm development. The expression of the three Zic genes was first detected at gastrulation in a spatially restricted manner. At neurulation, the expression became restricted to the dorsal neural ectoderm and dorsal paraxial mesoderm. During organogenesis, the three genes were expressed in specific regions of several developing organs, including dorsal areas of the brain, spinal cord, paraxial mesenchyme, and epidermis, the marginal zone of the neural retina and distal regions of the developing limb. For all stages, significant differences in the spatial expression of Zic1, Zic2, and Zic3 were observed. Furthermore, the expression of Zic genes in Pax3, Wnt-1, and Wnt-3a mutant embryos suggested that Zic genes are not primarily regulated by the three genes which were expressed in dorsal areas similar to Zic genes. However, in open brain, a mutant with severe neural tube defects, and in the Wnt-3a mutant mice, the expression of Zic genes was changed. The changed expression pattern in Wnt-3a mutant mice suggests that Zic genes in the neural tube are regulated by the factors from notochord. Our findings suggest that Zic genes are involved in many developmental processes. Furthermore, analysis of gene expression patterns in different mouse mutants indicated that Zic genes may act upstream of many known developmental regulatory genes.


Assuntos
Padronização Corporal/genética , Proteínas de Drosophila , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Peixe-Zebra , Dedos de Zinco/genética , Animais , Proteínas de Ligação a DNA/genética , Drosophila/embriologia , Drosophila/genética , Desenvolvimento Embrionário e Fetal/genética , Extremidades/embriologia , Olho/embriologia , Gástrula , Expressão Gênica , Proteínas de Homeodomínio/genética , Hibridização In Situ , Camundongos , Defeitos do Tubo Neural/genética , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados , Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Fatores de Transcrição/genética , Proteínas Wnt , Proteína Wnt1 , Proteína Wnt3 , Proteína Wnt3A , Dedos de Zinco/fisiologia
9.
Hum Mol Genet ; 8(4): 697-710, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10072440

RESUMO

The human gene HIC1 (hypermethylated in cancer) maps to chromosome 17p13.3 and is deleted in the contiguous gene disorder Miller-Dieker syndrome (MDS) [Makos-Wales et al. (1995) Nature Med., 1, 570-577; Chong et al. (1996) Genome Res., 6, 735-741]. We isolated the murine homologue Hic1, encoding a zinc-finger protein with a poxvirus and zinc-finger (POZ) domain and mapped it to mouse chromosome 11 in a region exhibiting conserved synteny to human chromosome 17. Comparison of genomic and cDNA sequences predicts two exons for the murine Hic1. The second exon exhibits 88% identity to the human HIC1 on DNA level. During embryonic development, Hic1 is expressed in mesenchymes of the sclerotomes, lateral body wall, limb and cranio-facial regions embedding the outgrowing peripheral nerves during their differentiation. During fetal development, Hic1 additionally is expressed in mesenchymes apposed to precartilaginous condensations, at many interfaces to budding epithelia of inner organs, and weakly in muscles. We observed activation of Hic1 expression in the embryonic anlagen of many tissues displaying anomalies in MDS patients. Besides lissencephaly, MDS patients exhibit facial dysmorphism and frequently additional birth defects, e.g. anomalies of the heart, kidney, gastrointestinal tract and the limbs (OMIM 247200). Thus, HIC1 activity may correlate with the defective development of the nose, jaws, extremities, gastrointestinal tract and kidney in MDS patients.


Assuntos
Anormalidades Múltiplas/genética , Encéfalo/anormalidades , Genes Supressores de Tumor/genética , Fatores de Transcrição/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Mapeamento Cromossômico , DNA/química , DNA/genética , DNA/isolamento & purificação , Embrião de Mamíferos/química , Feto/química , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Hibridização in Situ Fluorescente , Fatores de Transcrição Kruppel-Like , Mesoderma/química , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Síndrome , Distribuição Tecidual
10.
Proc Natl Acad Sci U S A ; 93(24): 13870-5, 1996 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-8943028

RESUMO

We describe a new mouse frameshift mutation (Pax2(1Neu)) with a 1-bp insertion in the Pax2 gene. This mutation is identical to a previously described mutation in a human family with renal-coloboma syndrome [Sanyanusin, P., McNoe, L. A., Sullivan, M. J., Weaver, R. G. & Eccles, M. R. (1995) Hum. Mol. Genet. 4, 2183-2184]. Heterozygous mutant mice exhibit defects in the kidney, the optic nerve, and retinal layer of the eye, and in homozygous mutant embryos, development of the optic nerve, metanephric kidney, and ventral regions of the inner ear is severely affected. In addition, we observe a deletion of the cerebellum and the posterior mesencephalon in homozygous mutant embryos demonstrating that, in contrast to mutations in Pax5, which is also expressed early in the mid-hindbrain region, loss of Pax2 gene function alone results in the early loss of the mid-hindbrain region. The mid-hindbrain phenotype is similar to Wnt1 and En1 mutant phenotypes, suggesting the conservation of gene regulatory networks between vertebrates and Drosophila.


Assuntos
Anormalidades Múltiplas/genética , Coloboma/genética , Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário e Fetal , Mutação da Fase de Leitura , Rim/anormalidades , Fatores de Transcrição/genética , Animais , Sequência de Bases , Encéfalo/anormalidades , Cruzamentos Genéticos , Primers do DNA , Orelha/anormalidades , Anormalidades do Olho/genética , Homozigoto , Humanos , Camundongos , Camundongos Endogâmicos , Dados de Sequência Molecular , Fator de Transcrição PAX2 , Fenótipo , Reação em Cadeia da Polimerase , Recombinação Genética , Síndrome
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa