RESUMO
Coral reefs are among the most sensitive ecosystems affected by ocean warming and acidification, and are predicted to collapse over the next few decades. Reefs are predicted to shift from net accreting calcifier-dominated systems with exceptionally high biodiversity to net eroding algal-dominated systems with dramatically reduced biodiversity. Here, we present a two-year experimental study examining the responses of entire mesocosm coral reef communities to warming (+2 °C), acidification (-0.2 pH units), and combined future ocean (+2 °C, -0.2 pH) treatments. Contrary to modeled projections, we show that under future ocean conditions, these communities shift structure and composition yet persist as novel calcifying ecosystems with high biodiversity. Our results suggest that if climate change is limited to Paris Climate Agreement targets, coral reefs could persist in an altered state rather than collapse.
Assuntos
Recifes de Corais , Aquecimento Global , Acidificação dos Oceanos , Oceanos e Mares , Água do Mar/química , Biodiversidade , Previsões , AnimaisRESUMO
Marine herbivorous fish that feed primarily on macroalgae, such as those from the genus Kyphosus, are essential for maintaining coral health and abundance on tropical reefs. Here, deep metagenomic sequencing and assembly of gut compartment-specific samples from three sympatric, macroalgivorous Hawaiian kyphosid species have been used to connect host gut microbial taxa with predicted protein functional capacities likely to contribute to efficient macroalgal digestion. Bacterial community compositions, algal dietary sources, and predicted enzyme functionalities were analyzed in parallel for 16 metagenomes spanning the mid- and hindgut digestive regions of wild-caught fishes. Gene colocalization patterns of expanded carbohydrate (CAZy) and sulfatase (SulfAtlas) digestive enzyme families on assembled contigs were used to identify likely polysaccharide utilization locus associations and to visualize potential cooperative networks of extracellularly exported proteins targeting complex sulfated polysaccharides. These insights into the gut microbiota of herbivorous marine fish and their functional capabilities improve our understanding of the enzymes and microorganisms involved in digesting complex macroalgal sulfated polysaccharides. IMPORTANCE This work connects specific uncultured bacterial taxa with distinct polysaccharide digestion capabilities lacking in their marine vertebrate hosts, providing fresh insights into poorly understood processes for deconstructing complex sulfated polysaccharides and potential evolutionary mechanisms for microbial acquisition of expanded macroalgal utilization gene functions. Several thousand new marine-specific candidate enzyme sequences for polysaccharide utilization have been identified. These data provide foundational resources for future investigations into suppression of coral reef macroalgal overgrowth, fish host physiology, the use of macroalgal feedstocks in terrestrial and aquaculture animal feeds, and the bioconversion of macroalgae biomass into value-added commercial fuel and chemical products.
Assuntos
Microbiota , Alga Marinha , Animais , Polissacarídeos , Sulfatos , Recifes de Corais , Peixes , Bactérias/genéticaRESUMO
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce genomic information about the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) from previously described Kyphosus gut metagenomes and newly sequenced bioreactor enrichments reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzyme collections able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) highlight the importance of metabolic contributions from multiple phyla to broaden polysaccharide degradation capabilities. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.IMPORTANCESeaweed has long been considered a promising source of sustainable biomass for bioenergy and aquaculture feed, but scalable industrial methods for decomposing terrestrial compounds can struggle to break down seaweed polysaccharides efficiently due to their unique sulfated structures. Fish of the genus Kyphosus feed on seaweed by leveraging gastrointestinal bacteria to degrade algal polysaccharides into simple sugars. This study reconstructs metagenome-assembled genomes for these gastrointestinal bacteria to enhance our understanding of herbivorous fish digestion and fermentation of algal sugars. Investigations at the gene level identify Kyphosus guts as an untapped source of seaweed-degrading enzymes ripe for further characterization. These discoveries set the stage for future work incorporating marine enzymes and microbial communities in the industrial degradation of algal polysaccharides.
Assuntos
Microbioma Gastrointestinal , Polissacarídeos , Alga Marinha , Simbiose , Animais , Polissacarídeos/metabolismo , Alga Marinha/microbiologia , Consórcios Microbianos , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Metagenoma , Peixes/microbiologia , FilogeniaRESUMO
Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events.
Assuntos
Antozoários , Animais , Antozoários/fisiologia , Recifes de Corais , Temperatura Alta , ÁguaRESUMO
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce foundational genomic work on the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzymes able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) suggest the potential for microbial transfer between marine sediment and Kyphosus digestive tracts. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.
RESUMO
BACKGROUND: Gut microorganisms aid in the digestion of food by providing exogenous metabolic pathways to break down organic compounds. An integration of longitudinal microbial and chemical data is necessary to illuminate how gut microorganisms supplement the energetic and nutritional requirements of animals. Although mammalian gut systems are well-studied in this capacity, the role of microbes in the breakdown and utilization of recalcitrant marine macroalgae in herbivorous fish is relatively understudied and an emerging priority for bioproduct extraction. Here we use a comprehensive survey of the marine herbivorous fish gut microbial ecosystem via parallel 16S rRNA gene amplicon profiling (microbiota) and untargeted tandem mass spectrometry (metabolomes) to demonstrate consistent transitions among 8 gut subsections across five fish of the genus of Kyphosus. RESULTS: Integration of microbial phylogenetic and chemical diversity data reveals that microbial communities and metabolomes covaried and differentiated continuously from stomach to hindgut, with the midgut containing multiple distinct and previously uncharacterized microenvironments and a distinct hindgut community dominated by obligate anaerobes. This differentiation was driven primarily by anaerobic gut endosymbionts of the classes Bacteroidia and Clostridia changing in concert with bile acids, small peptides, and phospholipids: bile acid deconjugation associated with early midgut microbiota, small peptide production associated with midgut microbiota, and phospholipid production associated with hindgut microbiota. CONCLUSIONS: The combination of microbial and untargeted metabolomic data at high spatial resolution provides a new view of the diverse fish gut microenvironment and serves as a foundation to understand functional partitioning of microbial activities that contribute to the digestion of complex macroalgae in herbivorous marine fish.