Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Cancer ; 19(1): 864, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470802

RESUMO

BACKGROUND: Bronchial carcinoids are neuroendocrine tumors that present as typical (TC) and atypical (AC) variants, the latter being more aggressive, invasive and metastatic. Studies of tumor initiating cell (TIC) biology in bronchial carcinoids has been hindered by the lack of appropriate in-vitro and xenograft models representing the bronchial carcinoid phenotype and behavior. METHODS: Bronchial carcinoid cell lines (H727, TC and H720, AC) were cultured in serum-free growth factor supplemented medium to form 3D spheroids and serially passaged up to the 3rd generation permitting expansion of the TIC population as verified by expression of stemness markers, clonogenicity in-vitro and tumorigenicity in both subcutaneous and orthotopic (lung) models. Acetazolamide (AZ), sulforaphane (SFN) and the AZ + SFN combination were evaluated for targeting TIC in bronchial carcinoids. RESULTS: Data demonstrate that bronchial carcinoid cell line 3rd generation spheroid cells show increased drug resistance, clonogenicity, and tumorigenic potential compared with the parental cells, suggesting selection and expansion of a TIC fraction. Gene expression and immunolabeling studies demonstrated that the TIC expressed stemness factors Oct-4, Sox-2 and Nanog. In a lung orthotopic model bronchial carcinoid, cell line derived spheroids, and patient tumor derived 3rd generation spheroids when supported by a stroma, showed robust tumor formation. SFN and especially the AZ + SFN combination were effective in inhibiting tumor cell growth, spheroid formation and in reducing tumor formation in immunocompromised mice. CONCLUSIONS: Human bronchial carcinoid tumor cells serially passaged as spheroids contain a higher fraction of TIC exhibiting a stemness phenotype. This TIC population can be effectively targeted by the combination of AZ + SFN. Our work portends clinical relevance and supports the therapeutic use of the novel AZ+ SFN combination that may target the TIC population of bronchial carcinoids.


Assuntos
Acetazolamida/administração & dosagem , Anticarcinógenos/administração & dosagem , Neoplasias Brônquicas/tratamento farmacológico , Tumor Carcinoide/tratamento farmacológico , Isotiocianatos/administração & dosagem , Células-Tronco Neoplásicas/efeitos dos fármacos , Acetazolamida/farmacologia , Animais , Anticarcinógenos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Brônquicas/genética , Neoplasias Brônquicas/metabolismo , Tumor Carcinoide/genética , Tumor Carcinoide/metabolismo , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Isotiocianatos/farmacologia , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Esferoides Celulares/citologia , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Sulfóxidos , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Mol Sci ; 20(11)2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159323

RESUMO

BACKGROUND: The KEAP1/NRF2 pathway is the key regulator of antioxidants and cellular stress responses, and is implicated in neoplastic progression and resistance of tumors to treatment. KEAP1 silencing by promoter methylation is widely reported in solid tumors as part of the complex regulation of the KEAP1/NRF2 axis, but its prognostic role remains to be addressed in lung cancer. METHODS: We performed a detailed methylation density map of 13 CpGs located into the KEAP1 promoter region by analyzing a set of 25 cell lines from different histologies of lung cancer. The methylation status was assessed using quantitative methylation specific PCR (QMSP) and pyrosequencing, and the performance of the two assays was compared. RESULTS: Hypermethylation at the promoter region of the KEAP1 was detected in one third of cell lines and its effect on the modulation KEAP1 mRNA levels was also confirmed by in vitro 5-Azacytidine treatment on lung carcinoid, small lung cancer and adenocarcinoma cell lines. QMSP and pyrosequencing showed a high rate of concordant results, even if pyrosequencing revealed two different promoter CpGs sub-islands (P1a and P1b) with a different methylation density pattern. CONCLUSIONS: Our results confirm the effect of methylation on KEAP1 transcription control across multiple histologies of lung cancer and suggest pyrosequencing as the best approach to investigate the pattern of CpGs methylation in the promoter region of KEAP1. The validation of this approach on lung cancer patient cohorts is mandatory to clarify the prognostic value of the epigenetic deregulation of KEAP1 in lung tumors.


Assuntos
Metilação de DNA , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Alelos , Sequência de Bases , Linhagem Celular Tumoral , Ilhas de CpG , Humanos , Neoplasias Pulmonares/patologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Análise de Sequência de DNA
4.
Int J Mol Sci ; 20(10)2019 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-31126053

RESUMO

BACKGROUND: The KEAP1/NRF2 pathway has been widely investigated in tumors since it was implicated in cancer cells survival and therapies resistance. In lung tumors the deregulation of this pathway is mainly related to point mutations of KEAP1 and NFE2L2 genes and KEAP1 promoter hypermethylation, but these two genes have been rarely investigated in low/intermediate grade neuroendocrine tumors of the lung. METHODS: The effects of KEAP1 silencing on NRF2 activity was investigated in H720 and H727 carcinoid cell lines and results were compared with those obtained by molecular profiling of KEAP1 and NFE2L2 in a collection of 47 lung carcinoids. The correlation between methylation and transcript levels was assessed by 5-aza-dC treatment. RESULTS: We demonstrated that in carcinoid cell lines, the KEAP1 silencing induces an upregulation of NRF2 and some of its targets and that there is a direct correlation between KEAP1 methylation and its mRNA levels. A KEAP1 hypermethylation and Loss of Heterozygosity at KEAP1 gene locus was also observed in nearly half of lung carcinoids. CONCLUSIONS: This is the first study that has described the effects of KEAP1 silencing on the regulation of NRF2 activity in lung carcinoids cells. The epigenetic deregulation of the KEAP1/NRF2 by a KEAP1 promoter hypermethylation system appears to be a frequent event in lung carcinoids.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2/genética , Tumores Neuroendócrinos/genética , Adulto , Linhagem Celular Tumoral , Metilação de DNA , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/patologia , Adulto Jovem
5.
Adv Anat Pathol ; 25(3): 197-215, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29189208

RESUMO

Extraneuraxial hemangioblastoma occurs in nervous paraneuraxial structures, somatic tissues, and visceral organs, as part of von Hippel-Lindau disease (VHLD) or in sporadic cases. The VHL gene plausibly plays a key role in the initiation and tumorigenesis of both central nervous system and extraneuraxial hemangioblastoma, therefore, the underlying molecular and genetic mechanisms of the tumor growth are initially reviewed. The clinical criteria for the diagnosis of VHLD are summarized, with emphasis on the distinction of sporadic hemangioblastoma from the form fruste of VHLD (eg, hemangioblastoma-only VHLD). The world literature on the topic of extraneuraxial hemangioblastomas has been comprehensively reviewed with ∼200 cases reported to date: up to 140 paraneuraxial, mostly of proximal spinal nerve roots, and 65 peripheral, 15 of soft tissue, 6 peripheral nerve, 5 bone, and 39 of internal viscera, including 26 renal and 13 nonrenal. A handful of possible yet uncertain cases from older literature are not included in this review. The clinicopathologic features of extraneuraxial hemangioblastoma are selectively presented by anatomic site of origin, and the differential diagnosis is emphasized in these subsets. Reference is made also to 10 of the authors' personal cases of extraneuraxial hemangioblastomas, which include 4 paraneuraxial and 6 peripheral (2 soft tissue hemangioblastoma and 4 renal).


Assuntos
Hemangioblastoma/diagnóstico , Hemangioblastoma/patologia , Humanos , Doença de von Hippel-Lindau/complicações
6.
Glia ; 64(1): 139-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26413835

RESUMO

Regulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD. Using calcium imaging, we show that AQP-mediated fast swelling kinetics also significantly increases the amplitude of calcium transients inhibited by Gadolinium and Ruthenium Red, two inhibitors of the transient receptor potential vanilloid 4 (TRPV4) channels, and prevented by removing extracellular calcium. Finally, inhibition of TRPV4 or removal of extracellular calcium does not affect RVD. All together our study provides evidence that (1) AQP influenced swelling kinetics is the main trigger for RVD and in mediating calcium signaling after hypotonic stimulus together with TRPV4, and (2) calcium influx from the extracellular space and/or TRPV4 are not essential for RVD to occur in astrocytes.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Sinalização do Cálcio/fisiologia , Animais , Aquaporina 1/genética , Aquaporina 1/metabolismo , Aquaporina 4/genética , Aquaporina 4/metabolismo , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Espaço Extracelular/metabolismo , Humanos , Cinética , Camundongos Knockout , Ratos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Água/química
8.
Cancers (Basel) ; 16(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38791966

RESUMO

The KEAP1/NRF2 pathway is a master regulator of several redox-sensitive genes implicated in the resistance of tumor cells against therapeutic drugs. The dysfunction of the KEAP1/NRF2 system has been correlated with neoplastic patients' outcomes and responses to conventional therapies. In lung tumors, the growth and the progression of cancer cells may also involve the intersection between the molecular NRF2/KEAP1 axis and other pathways, including NOTCH, with implications for antioxidant protection, survival of cancer cells, and drug resistance to therapies. At present, the data concerning the mechanism of aberrant NRF2/NOTCH crosstalk as well as its genetic and epigenetic basis in SCLC are incomplete. To better clarify this point and elucidate the contribution of NRF2/NOTCH crosstalk deregulation in tumorigenesis of SCLC, we investigated genetic and epigenetic dysfunctions of the KEAP1 gene in a subset of SCLC cell lines. Moreover, we assessed its impact on SCLC cells' response to conventional chemotherapies (etoposide, cisplatin, and their combination) and NOTCH inhibitor treatments using DAPT, a γ-secretase inhibitor (GSI). We demonstrated that the KEAP1/NRF2 axis is epigenetically controlled in SCLC cell lines and that silencing of KEAP1 by siRNA induced the upregulation of NRF2 with a consequent increase in SCLC cells' chemoresistance under cisplatin and etoposide treatment. Moreover, KEAP1 modulation also interfered with NOTCH1, HES1, and DLL3 transcription. Our preliminary data provide new insights about the downstream effects of KEAP1 dysfunction on NRF2 and NOTCH deregulation in this type of tumor and corroborate the hypothesis of a cooperation of these two pathways in the tumorigenesis of SCLC.

9.
Front Oncol ; 13: 1137384, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152062

RESUMO

The advances in scientific knowledge on biological therapies of the last two decades have impressively oriented the clinical management of non-small-cell lung cancer (NSCLC) patients. The treatment with tyrosine kinase inhibitors (TKIs) in patients harboring Epidermal Growth Factor Receptor (EGFR)-activating mutations is dramatically associated with an improvement in disease control. Anyhow, the prognosis for this selected group of patients remains unfavorable, due to the innate and/or acquired resistance to biological therapies. The methylome analysis of many tumors revealed multiple patterns of methylation at single/multiple cytosine-phosphate-guanine (CpG) sites that are linked to the modulation of several cellular pathways involved in cancer onset and progression. In lung cancer patients, ever increasing evidences also suggest that the association between DNA methylation changes at promoter/intergenic regions and the consequent alteration of gene-expression signatures could be related to the acquisition of resistance to biological therapies. Despite this intriguing hypothesis, large confirmatory studies are demanded to consolidate and finalize many preliminary observations made in this field. In this review, we will summarize the available knowledge about the dynamic role of DNA methylation in EGFR-mutated NSCLC patients.

10.
Cancers (Basel) ; 15(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36612287

RESUMO

A range of different techniques are available for predictive biomarker testing for non-small-cell lung cancer (NSCLC) clinical management. International guidelines suggest next-generation sequencing (NGS) as the preferred procedure, but other reverse transcriptase-polymerase chain reaction (RT-PCR)-based methods are rapidly evolving. In this study, we evaluated the reliability and accuracy of the IdyllaTM GeneFusion assay, a rapid and fully automated platform able to simultaneously detect ALK, ROS1, RET and NTRK1/2/3 and MET ex14 skipping mutations and compared its performance with routine reference methods. The cohort included thirty-seven NSCLCs plus two parotid gland carcinomas, previously characterized for the above alterations through either IHC, FISH, RT-PCR or NGS. In 36 of 39 cases, the Idylla GeneFusion assay and the reference methods were concordant (overall agreement: 92.3%). Tumor sections stored at room temperature for up to 60 days and 17 cases older than 2 years were successfully characterized. Our results suggest that the Idylla GeneFusion assay is a reliable tool to define gene fusion status and may be a valuable stand-alone diagnostic test when time efficiency is needed or NGS is not feasible.

11.
Front Oncol ; 12: 968804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033501

RESUMO

DNA methylation is the most recognized epigenetic mark that leads to a massive distortion in cancer cells. It has been observed that a large number of DNA aberrant methylation events occur simultaneously in a group of genes, thus providing a growth advantage to the cell in promoting cell differentiation and neoplastic transformation. Due to this reason, methylation profiles have been suggested as promising cancer biomarkers. Here, we designed and performed a first step of validation of a novel targeted next generation sequencing (NGS) panel for methylation analysis, which can simultaneously evaluate the methylation levels at CpG sites of multiple cancer-related genes. The OPERA_MET-A methylation panel was designed using the Ion AmpliSeq™ technology to amplify 155 regions with 125-175 bp mean length and covers a total of 1107 CpGs of 18 cancer-related genes. The performance of the panel was assessed by running commercially available fully methylated and unmethylated control human genomic DNA (gDNA) samples and a variable mixture of them. The libraries were run on Ion Torrent platform and the sequencing output was analyzed using the "methylation_analysis" plugin. DNA methylation calls on both Watson (W) and Crick (C) strands and methylated:unmethylated ratio for each CpG site were obtained. Cell lines, fresh frozen and formalin-fixed paraffin-embedded (FFPE) lung cancer tissues were tested. The OPERA_MET-A panel allows to run a minimum of 6 samples/530 chip to reach an observed mean target depth ≥2,500X (W and C strands) and an average number of mapped reads >750,000/sample. The conversion efficiency, determined by spiking-in unmethylated Lambda DNA into each sample before the bisulfite conversion process, was >97% for all samples. The observed percentage of global methylation for all CpGs was >95% and <5% for fully methylated and unmethylated gDNA samples, respectively, and the observed results for the variable mixtures were in agreement with what was expected. Methylation-specific NGS analysis represents a feasible method for a fast and multiplexed screening of cancer patients by a high-throughput approach. Moreover, it offers the opportunity to construct a more robust algorithm for disease prediction in cancer patients having a low quantity of biological material available.

13.
Expert Opin Ther Targets ; 25(10): 865-875, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34706602

RESUMO

INTRODUCTION: Fusions in neuregulin 1 (NRG1) and neuregulin 2 (NRG2) genes are molecular features of non-small cell lung cancer (NSCLC). These rearrangements enhance ectopic expression of the NRG/ErbB receptor-ligand and induce the triggering of downstream pathways. Evidence suggests the involvement of the NRG1/ErbB3 axis deregulation in the progression and treatment resistance of NSCLC cancer (NSCLC) and that NRG1 fusions are prognostic/predictive markers for targeted therapy. AREAS COVERED: Biological and prognostic/predictive value of NRG1 and NRG2 fusions in NSCLC and their related cellular pathways are described and discussed. Publications in English language, peer-reviewed, high-quality international journals were identified on PubMed, as well as scientific official sites were used to update the international clinical trials progress. EXPERT OPINION: NRG1 and NRG2 fusions should be considered as novel markers for biological therapy targeting ErbB2/ErbB3. There is evidence for the involvement of the NRG1/ErbB3 axis deregulation in cancer stem cell phenotype, tumor progression, and resistance to NSCLC therapy. Neuregulin fusions are very complex, hence many question marks must be tackled before translating these molecular lesions into clinical practice. Biology, and aggressiveness of the NRG1 and NRG2 fusions warrant further investigations.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neuregulina-1/genética , Neuregulina-1/metabolismo , Neuregulina-1/uso terapêutico
14.
Cancers (Basel) ; 13(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809582

RESUMO

No well-established prognostic or predictive molecular markers of small-cell lung cancer (SCLC) are currently available; therefore, all patients receive standard treatment. Adequate quantities and quality of tissue samples are frequently unavailable to perform a molecular analysis of SCLC, which appears more heterogeneous and dynamic than expected. The implementation of techniques to study circulating tumor cells could offer a suitable alternative to expand the knowledge of the molecular basis of a tumor. In this context, the advantage of SCLC circulating cells to express some specific markers to be explored in blood as circulating transcripts could offer a great opportunity in distinguishing and managing different SCLC phenotypes. Here, we present a summary of published data and new findings about the detection methods and potential application of a group of neuroendocrine related transcripts in the peripheral blood of SCLC patients. In the era of new treatments, easy and rapid detection of informative biomarkers in blood warrants further investigation, since it represents an important option to obtain essential information for disease monitoring and/or better treatment choices.

15.
Front Mol Biosci ; 8: 784876, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926584

RESUMO

Pulmonary carcinoids combined with a non-neuroendocrine component have rarely been described, and this histological subtype is not included as a specific entity in the current World Health Organization classification of pulmonary neoplasms. Here, we described the molecular and histological features of two rare cases of mixed lung neoplasms, composed of atypical carcinoid and adenocarcinoma. The targeted next-generation sequencing analysis covering single nucleotide variations, copy number variations, and transcript fusions in a total of 161 cancer genes of the two different tumor components shows a similar molecular profile of shared and private gene mutations. These findings suggest their monoclonal origin from a transformed stem/progenitor tumor cell, which acquires a divergent differentiation during its development and progression and accumulates novel, specific mutations.

16.
Oncotarget ; 12(15): 1470-1489, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34316328

RESUMO

OBJECTIVE: Aberrations in the PI3K/AKT/mTOR survival pathway in many cancers are the most common genomic abnormalities. The phytochemical and bioactive agent sulforaphane (SFN) has nutrigenomic potential in activating the expression of several cellular protective genes via the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Nrf2 is primarily related to mechanisms of endogenous cellular defense and survival. The efficacy of SFN in combination with acetazolamide (AZ) was investigated in reducing typical H727 and atypical H720 BC survival, migration potential, and apoptosis in vitro and in vivo preclinical xenograft tissues. MATERIALS AND METHODS: Microscopic imaging, immunocytochemistry, wound healing assay, caspase-cleaved cytokeratin 18 (M30, CCK18) CytoDeath ELISA assay, immunofluorescence labeling assays for apoptosis, hypoxia, Western Blotting, Tunnel assay, measurement of 5-HT secretion by carbon fiber amperometry assay, quantitative methylation-specific PCR (qMSP), morphologic changes, cell viability, apoptosis activity and the expression levels of phospho-Akt1, Akt1, HIF-1α, PI3K, p21, CAIX, 5-HT, phospho-mTOR, and mTOR in xenografts derived from typical H727 and atypical H720 BC cell lines. RESULTS: Combining AZ+SFN reduced tumor cell survival compared to each agent alone, both in vitro and in vivo xenograft tissues. AZ+SFN targeted multiple pathways involved in cell cycle, serotonin secretion, survival, and growth pathways, highlighting its therapeutic approach. Both H727 and H720 cells were associated with induction of apoptosis, upregulation of the p21 cell cycle inhibitor, and downregulation of the PI3K/Akt/mTOR pathway, suggesting that the PI3K/Akt/mTOR pathway is a primary target of the AZ+SFN combination therapy. CONCLUSIONS: Combining SFN+AZ significantly inhibits the PI3K/Akt/mTOR pathway and significantly reducing 5-HT secretion in carcinoid syndrome.

17.
Blood Adv ; 5(1): 26-38, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33570622

RESUMO

Distinct metabolic demands accompany lymphocyte differentiation into short-lived effector and long-lived memory cells. How bioenergetics processes are structured in innate natural killer (NK) cells remains unclear. We demonstrate that circulating human CD56Dim (NKDim) cells have fused mitochondria and enhanced metabolism compared with CD56Br (NKBr) cells. Upon activation, these 2 subsets showed a dichotomous response, with further mitochondrial potentiation in NKBr cells vs paradoxical mitochondrial fission and depolarization in NKDim cells. The latter effect impaired interferon-γ production, but rescue was possible by inhibiting mitochondrial fragmentation, implicating mitochondrial polarization as a central regulator of NK cell function. NKDim cells are heterogeneous, and mitochondrial polarization was associated with enhanced survival and function in mature NKDim cells, including memory-like human cytomegalovirus-dependent CD57+NKG2C+ subsets. In contrast, patients with genetic defects in mitochondrial fusion had a deficiency in adaptive NK cells, which had poor survival in culture. These results support mitochondrial polarization as a central regulator of mature NK cell fitness.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Humanos , Células Matadoras Naturais , Ativação Linfocitária , Mitocôndrias
18.
Cancers (Basel) ; 12(12)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287295

RESUMO

Nuclear factor erythroid 2-related factor 2 (NRF2) is the key transcription factor triggered by oxidative stress that moves in cells of the antioxidant response element (ARE)-antioxidant gene network against reactive oxygen species (ROS) cellular damage. In tumors, the NRF2 pathway represents one of the most intriguing pathways that promotes chemo- and radioresistance of neoplastic cells and its activity is regulated by genetic and epigenetic mechanisms; some of these being poorly investigated in cancer. The noncoding RNA (ncRNA) network is governed by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) and modulates a variety of cellular mechanisms linked to cancer onset and progression, both at transcriptional and post-transcriptional levels. In recent years, the scientific findings about the effects of ncRNA landscape variations on NRF2 machines are rapidly increasing and need to be continuously updated. Here, we review the latest knowledge about the link between NRF2 and ncRNA networks in cancer, thus focusing on their potential translational significance as key tumor biomarkers.

19.
Antioxidants (Basel) ; 9(9)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32971994

RESUMO

BACKGROUND: The KEAP1/NRF2 (Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor 2) pathway modulates detoxification processes and participates in the resistance of solid tumors to therapy. Scientific evidence about the presence of genetic and epigenetic abnormalities of the KEAP1 gene was firstly reported in non-small-cell lung cancer (NSCLC) and then described in other tumors. At present, the prognostic role of aberrant methylation at cytosine-guanine dinucleotide (CpG) sites of the KEAP1 gene promoter is debated in NSCLC, and its correlation with transcriptional changes and protein levels remains to be defined in large sample cohorts. METHODS: We evaluated and compared multiple KEAP1 omics data (methylation, transcript, and protein expression levels) from The Cancer Genome Atlas (TCGA) to explore the role of CpGs located in different portions of KEAP1 and the correlation between methylation, transcription, and protein levels. Data from two subsets of lung adenocarcinoma (LUAD, n = 617) and lung squamous cell carcinoma (LUSC, n = 571) cohorts of NSCLC patients with different disease stages were evaluated. RESULTS: We found that the methylation levels of many KEAP1 CpGs at various promoter and intragenic locations showed a significant inverse correlation with the transcript levels. Interestingly, these results were limited to the KRAS wild-type LUSC and LUAD cohorts, whereas in LUAD the effect of the epigenetic silencing of KEAP1 on its transcription was also observed in the EGFR mutated subpopulation. CONCLUSIONS: These results support the idea that the prognostic role of KEAP1 CpG sites warrants more in-depth investigation and that the impact of their changes in methylation levels may differ among specific NSCLC histologies and molecular backgrounds. Moreover, the observed impact of epigenetic silencing on KEAP1 expression in specific KRAS and EGFR settings may suggest a potential role of KEAP1 methylation as a predictive marker for NSCLC patients for whom anti-EGFR treatments are considered.

20.
Cells ; 9(6)2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580473

RESUMO

The silencing of SPARC (secreted protein acid and rich in cysteine) gene through methylation of its promoter region represents a common event in many solid tumors and it is frequently associated with tumor progression and an aggressive clinical outcome. Anyhow, the data concerning the epigenetic mechanism of SPARC deregulation and its prognostic value in lung cancer are still incomplete. We explored the aberrant methylation of SPARC and its effects in 4 non-small cell lung cancer (NSCLC) cell lines and 59 NSCLC tissues and correlated the methylation levels with clinical-pathological features and disease outcome of patients. In 3 out of 4 tumor cell lines high SPARC methylation levels were observed. An inverse correlation between the epigenetic silencing and SPARC expression was confirmed by 5-Aza-2'-deoxycytidine ((5-Aza-CdR) treatment that also significantly induced a reduction in cell viability, proliferation and tumor cell migration. In tissues, the DNA methylation levels of the SPARC gene were significantly lower in paired non-neoplastic lungs (NLs) and normal lungs distant from tumor (NLDTs) than in NSCLCs (p = 0.002 and p = 0.0034 respectively). A promoter hypermethylation was detected in 68% of squamous cell carcinoma (SqCCs, 17/25) and 56% of adenocarcinoma (ADCs, 19/34), with SqCC showing the highest levels of methylation. Higher SPARC methylation levels were significantly associated with higher mortality risk both in all NSCLCs early stage patients (Hazard Ratio, HR = 1.97; 95% Confidence Interval, CI: 1.32-2.93; p = 0.001) and in those with SqCC (HR = 2.96; 95% CI: 1.43-6.12; p = 0.003). Promoter methylation of SPARC gene should represent an interesting prognostic biomarker in NSCLC, with potential application in the squamous early-stage context. Further research in this setting on larger independent cohorts of lung patients with different histologies and stages of disease are warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Metilação de DNA/genética , Neoplasias Pulmonares/genética , Osteonectina/genética , Linhagem Celular Tumoral , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa