Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Toxicol Appl Pharmacol ; 485: 116911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38527694

RESUMO

The highly selective Spleen Tyrosine Kinase (SYK) inhibitors entospletinib and lanraplenib disrupt kinase activity and inhibit immune cell functions. They are developed for treatment of B-cell malignancies and autoimmunity diseases. The impact of P-gp/ABCB1 and BCRP/ABCG2 efflux transporters, OATP1a/1b uptake transporters and CYP3A drug-metabolizing enzymes on the oral pharmacokinetics of these drugs was assessed using mouse models. Entospletinib and lanraplenib were orally administered simultaneously at moderate dosages (10 mg/kg each) to female mice to assess the possibility of examining two structurally and mechanistically similar drugs at the same time, while reducing the number of experimental animals and sample-processing workload. The plasma pharmacokinetics of both drugs were not substantially restricted by Abcb1 or Abcg2. The brain-to-plasma ratios of entospletinib in Abcb1a/b-/-, Abcg2-/- and Abcb1a/b;Abcg2-/- mice were 1.7-, 1.8- and 2.9-fold higher, respectively, compared to those in wild-type mice. For lanraplenib these brain-to-plasma ratios were 3.0-, 1.3- and 10.4-fold higher, respectively. This transporter-mediated restriction of brain penetration for both drugs could be almost fully inhibited by coadministration of the dual ABCB1/ABCG2 inhibitor elacridar, without signs of acute toxicity. Oatp1a/b and human CYP3A4 did not seem to affect the pharmacokinetics of entospletinib and lanraplenib, but mouse Cyp3a may limit lanraplenib plasma exposure. Unexpectedly, entospletinib and lanraplenib increased each other's plasma exposure by 2.6- to 2.9-fold, indicating a significant drug-drug interaction. This interaction was, however, unlikely to be mediated through any of the studied transporters or CYP3A. The obtained insights may perhaps help to further improve the safety and efficacy of entospletinib and lanraplenib.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Encéfalo , Indazóis , Morfolinas , Inibidores de Proteínas Quinases , Pirazinas , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Feminino , Camundongos , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Camundongos Knockout , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Camundongos Endogâmicos C57BL , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Administração Oral
2.
Pharmacol Res ; 190: 106724, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36907287

RESUMO

Organic anion transporting polypeptide 2B1 (OATP2B1/SLCO2B1) facilitates uptake transport of structurally diverse endogenous and exogenous compounds. To investigate the roles of OATP2B1 in physiology and pharmacology, we established and characterized Oatp2b1 knockout (single Slco2b1-/- and combination Slco1a/1b/2b1-/-) and humanized hepatic and intestinal OATP2B1 transgenic mouse models. While viable and fertile, these strains exhibited a modestly increased body weight. In males, unconjugated bilirubin levels were markedly reduced in Slco2b1-/- compared to wild-type mice, whereas bilirubin monoglucuronide levels were modestly increased in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice. Single Slco2b1-/- mice showed no significant changes in oral pharmacokinetics of several tested drugs. However, markedly higher or lower plasma exposure of pravastatin and the erlotinib metabolite OSI-420, respectively, were found in Slco1a/1b/2b1-/- compared to Slco1a/1b-/- mice, while oral rosuvastatin and fluvastatin behaved similarly between the strains. In males, humanized OATP2B1 strains showed lower conjugated and unconjugated bilirubin levels than control Slco1a/1b/2b1-deficient mice. Moreover, hepatic expression of human OATP2B1 partially or completely rescued the impaired hepatic uptake of OSI-420, rosuvastatin, pravastatin, and fluvastatin in Slco1a/1b/2b1-/- mice, establishing an important role in hepatic uptake. Expression of human OATP2B1 in the intestine was basolateral and markedly reduced the oral availability of rosuvastatin and pravastatin, but not of OSI-420 and fluvastatin. Neither lack of Oatp2b1, nor overexpression of human OATP2B1 had any effect on fexofenadine oral pharmacokinetics. While these mouse models still have limitations for human translation, with additional work we expect they will provide powerful tools to further understand the physiological and pharmacological roles of OATP2B1.


Assuntos
Bilirrubina , Transportadores de Ânions Orgânicos , Masculino , Camundongos , Humanos , Animais , Rosuvastatina Cálcica , Fluvastatina , Pravastatina , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/metabolismo , Camundongos Transgênicos , Peptídeos/metabolismo , Ânions/metabolismo , Camundongos Knockout
3.
Biomed Chromatogr ; 37(11): e5720, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37596864

RESUMO

We developed and validated an assay utilizing a liquid chromatography-tandem mass spectrometry technique to quantify the KRAS inhibitor adagrasib in mouse plasma and seven tissue-related matrices. The straightforward protein precipitation technique was selected to extract adagrasib and the internal standard salinomycin from the matrices. Gradient elution of acetonitrile and water modified with 0.5% (v/v) ammonium hydroxide and 0.02% (v/v) acetic acid on a C18 column at a flow rate of 0.6 ml/min was applied to separate the analytes. Both adagrasib and salinomycin were detected with a triple quadrupole mass spectrometer with positive electrospray ionization in a selected reaction monitoring mode. A linear calibration range of 2-2,000 ng/ml of adagrasib was demonstrated during the validation. In addition, the reported precision values (intra- and inter-day) were between 3.5 and 14.9%, while the accuracy values were 85.5-111.0% for all tested levels in all investigated matrices. Adagrasib in mouse plasma was reported to have good stability at room temperature, while adagrasib in tissue-related matrices was stable on ice for up to 4 h (matrix dependent). Finally, this method was successfully applied to determine the pharmacokinetic profile and tissue distribution of adagrasib in wild-type mice.

4.
Pharmacol Res ; 178: 106137, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35192958

RESUMO

Sotorasib (Lumakras™) is the first FDA-approved KRASG12C inhibitor for treatment of patients with non-small cell lung cancer (NSCLC) carrying this mutation. Using genetically modified mouse models, we studied the influence of the efflux transporters ABCB1 and ABCG2, the OATP1a/1b uptake transporters, and the CYP3A drug-metabolizing enzyme complex on the plasma pharmacokinetics and tissue distribution of oral sotorasib. In vitro, sotorasib was a potent substrate for human ABCB1 and a modest substrate for mouse Abcg2, but not for human ABCG2. In vivo, the brain-to-plasma ratio of sotorasib (40 mg/kg) was highly increased in Abcb1a/1b-/- (5.9-fold) and Abcb1a/1b;Abcg2-/- (7.6-fold) compared to wild-type mice, but not in single Abcg2-/- mice. Upon coadministering elacridar, an ABCB1/ABCG2 inhibitor, sotorasib brain accumulation increased 7.5-fold, approaching the levels observed in Abcb1a/1b-deficient mice. No acute CNS toxicity emerged upon boosting of the sotorasib exposure. In Oatp1a/1b-deficient mice, we observed a 2-fold reduction in liver disposition compared to wild-type mice, although these uptake transporters had no noticeable impact on sotorasib plasma exposure. However, plasma exposure was limited by mouse Cyp3a and human CYP3A4, as the AUC0-4 h in Cyp3a-/- mice was increased by 2.5-fold compared to wild-type mice, and subsequently strongly decreased (by 3.9-fold) in Cyp3aXAV mice transgenically overexpressing human CYP3A4 in liver and intestine. Collectively, the oral availability of sotorasib was markedly limited by CYP3A and possibly also by ABCB1 and OATP1a/b, whereas its brain accumulation was strongly restricted by ABCB1. The obtained results may help to further optimize the safety and efficacy of sotorasib in clinical use.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Piperazinas , Proteínas Proto-Oncogênicas p21(ras) , Piridinas , Pirimidinas
5.
Biomed Chromatogr ; 36(11): e5457, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35855648

RESUMO

EAI045 is a tyrosine kinase inhibitor (TKI) that targets the mutant epidermal growth factor receptor (EGFR). It was developed to control resistance to available EGFR TKIs. In this study, a major metabolite of EAI045, (5-fluoro-2-hydroxyphenyl)(1-oxo-1,3-dihydro-2H-isoindol-2-yl)acetic acid (PIA), was discovered as a hydrolysis product of the parent drug. A validated assay for both analytes in mouse plasma and tissue homogenates from brain, kidney, liver, lung, spleen, and small intestine with content was set up using LC-MS/MS. Samples were prepared by protein precipitation with acetonitrile and with PLX4720 as internal standard. Separation was performed on a bridged ethylene hybrid C18 column by gradient elution with 0.1% v/v formic acid and methanol. Using positive electrospray, detection was performed in selected reaction monitoring mode. A linear calibration range of 2-2,000 ng/ml was used and validated for both analytes. Precision values ranged between 2.0 and 7.5% for EAI045 and between 2.2 and 12.1% for the metabolite, and accuracy values were between 91.1 and 107.6% for EAI045 and between 87.6 and 100.6% for the metabolite. Both analytes were sufficiently stable under the relevant analytical conditions. Finally, the assay was applied to analyze mouse plasma and tissue levels in a pharmacokinetic study in FVB/NRj wild-type female mice treated with oral EAI045.


Assuntos
Metanol , Espectrometria de Massas em Tandem , Acetonitrilas , Animais , Benzenoacetamidas , Cromatografia Líquida/métodos , Receptores ErbB , Etilenos , Feminino , Camundongos , Inibidores de Proteínas Quinases , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Tiazóis
6.
Biomed Chromatogr ; 36(5): e5307, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34978088

RESUMO

Proximal tubular damage is an important prognostic determinant in various chronic kidney diseases (CKDs). Currently available diagnostic methods do not allow for early disease detection and are neither efficient. Indoxyl sulfate (IS) is an endogenous metabolite and protein-bound uremic toxin that is eliminated via renal secretion, but accumulates in plasma during tubular dysfunction. Therefore, it may be suitable as a tubular function marker. To evaluate this, a fast bioanalytical method was developed and validated for IS in various species and a kidney cell line using LC-MS/MS. An isotope-labeled IS potassium salt as an internal standard and acetonitrile (ACN) as a protein precipitant were used for sample pretreatment. The analyte was separated on a Polaris 3 C18-A column by gradient elution using 0.1% formic acid in water and ACN, and detected by negative electrospray ionization in selected reaction monitoring mode. The within-day (≤ 4.0%) and between-day (≤ 4.3%) precisions and accuracies (97.7 to 107.3%) were within the acceptable range. The analyte showed sufficient stability at all conditions investigated. Finally, applying this assay, significantly higher plasma and lower urine concentrations of IS were observed in mice with diabetic nephropathy with tubular damage, which encourages validation toward its use as a biomarker.


Assuntos
Indicã , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida/métodos , Rim , Camundongos , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
7.
Invest New Drugs ; 39(1): 1-14, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32623551

RESUMO

Ibrutinib is a first-in-class Bruton's kinase inhibitor used in the treatment of multiple lymphomas. In addition to CYP3A4-mediated metabolism, glutathione conjugation can be observed. Subsequently, metabolism of the conjugates and finally their excretion in feces and urine occurs. These metabolites, however, can reach substantial concentrations in human subjects, especially when CYP3A4 is inhibited. Ibrutinib has unexplained nephrotoxicity and high metabolite concentrations are also found in kidneys of Cyp3a knockout mice. Here, a mechanism is proposed where the intermediate cysteine metabolite is bioactivated. The metabolism of ibrutinib through this glutathione cycle was confirmed in cultured human renal proximal tubule cells. Ibrutinib-mediated toxicity was enhanced in-vitro by inhibitors of breast cancer resistance protein (BCRP), P-glycoprotein (P-gp) and multidrug resistance protein (MRP). This was a result of accumulating cysteine metabolite levels due to efflux inhibition. Finally, through inhibition of downstream metabolism, it was shown now that direct conjugation was responsible for cysteine metabolite toxicity.


Assuntos
Injúria Renal Aguda/induzido quimicamente , Adenina/análogos & derivados , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacocinética , Piperidinas/efeitos adversos , Piperidinas/farmacocinética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Adenina/administração & dosagem , Adenina/efeitos adversos , Adenina/farmacocinética , Idoso , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocromo P-450 CYP3A/metabolismo , Glutationa/metabolismo , Humanos , Túbulos Renais Proximais/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas de Neoplasias/antagonistas & inibidores , Piperidinas/administração & dosagem
8.
Pharmacol Res ; 172: 105850, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34450308

RESUMO

BACKGROUND AND PURPOSE: Pralsetinib is an FDA-approved oral small-molecule inhibitor for treatment of rearranged during transfection (RET) proto-oncogene fusion-positive non-small cell lung cancer. We investigated how the efflux transporters ABCB1 and ABCG2, the SLCO1A/1B uptake transporters and the drug-metabolizing enzyme CYP3A influence pralsetinib pharmacokinetics. EXPERIMENTAL APPROACH: In vitro, transepithelial pralsetinib transport was assessed. In vivo, pralsetinib (10 mg/kg) was administered orally to relevant genetically modified mouse models. Pralsetinib concentrations in cell medium, plasma samples and organ homogenates were measured using liquid chromatography-tandem mass spectrometry. KEY RESULTS: Pralsetinib was efficiently transported by human (h)ABCB1 and mouse (m)Abcg2, but not hACBG2. In vivo, mAbcb1a/1b markedly and mAbcg2 slightly limited pralsetinib brain penetration (6.3-and 1.8-fold, respectively). Testis distribution showed similar results. Abcb1a/1b;Abcg2-/- mice showed 1.5-fold higher plasma exposure, 23-fold increased brain penetration, and 4-fold reduced recovery of pralsetinib in the small intestinal content. mSlco1a/1b deficiency did not affect pralsetinib oral availability or tissue exposure. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar boosted pralsetinib plasma exposure (1.3-fold) and brain penetration (19.6-fold) in wild-type mice. Additionally, pralsetinib was a modest substrate of mCYP3A, but not of hCYP3A4, which did not noticeably restrict the oral availability or tissue distribution of pralsetinib. CONCLUSIONS AND IMPLICATIONS: SLCO1A/1B and CYP3A4 are unlikely to affect the pharmacokinetics of pralsetinib, but ABCG2 and especially ABCB1 markedly limit its brain and testis penetration, as well as oral availability. These effects are mostly reversed by oral coadministration of the ABCB1/ABCG2 inhibitor elacridar. These insights may be useful in the further clinical development of pralsetinib.


Assuntos
Antineoplásicos/farmacocinética , Transportadores de Ânions Orgânicos/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-ret/antagonistas & inibidores , Pirazóis/farmacocinética , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Administração Oral , Animais , Antineoplásicos/sangue , Disponibilidade Biológica , Encéfalo/metabolismo , Citocromo P-450 CYP3A/genética , Feminino , Masculino , Camundongos Knockout , Transportadores de Ânions Orgânicos/antagonistas & inibidores , Transportadores de Ânions Orgânicos/genética , Inibidores de Proteínas Quinases/sangue , Pirazóis/sangue , Piridinas/sangue , Pirimidinas/sangue , Testículo/metabolismo
9.
Pharmacol Res ; 146: 104297, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31175939

RESUMO

Osimertinib is an irreversible EGFR inhibitor registered for advanced NSCLC patients whose tumors harbor recurrent somatic activating mutations in EGFR (EGFRm+) or the frequently occurring EGFR-T790M resistance mutation. Using in vitro transport assays and appropriate knockout and transgenic mouse models, we investigated whether the multidrug efflux transporters ABCB1 and ABCG2 transport osimertinib and whether they influence the oral availability and brain accumulation of osimertinib and its most active metabolite, AZ5104. In vitro, human ABCB1 and mouse Abcg2 modestly transported osimertinib. In mice, Abcb1a/1b, with a minor contribution of Abcg2, markedly limited the brain accumulation of osimertinib and AZ5104. However, no effect of the ABC transporters was seen on osimertinib oral availability. In spite of up to 6-fold higher brain accumulation, we observed no acute toxicity signs of oral osimertinib in Abcb1a/1b;Abcg2 knockout mice. Interestingly, even in wild-type mice the intrinsic brain penetration of osimertinib was already relatively high, which may help to explain the documented partial efficacy of this drug against brain metastases. No substantial effects of mouse Cyp3a knockout or transgenic human CYP3A4 overexpression on oral osimertinib pharmacokinetics were observed, presumably due to a dominant role of mouse Cyp2d enzymes in osimertinib metabolism. Our results suggest that pharmacological inhibition of ABCB1 and ABCG2 during osimertinib therapy might potentially be considered to further benefit patients with brain (micro-)metastases positioned behind an intact blood-brain barrier, or with substantial expression of these transporters in the tumor cells, without invoking a high toxicity risk.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Acrilamidas/metabolismo , Compostos de Anilina/metabolismo , Encéfalo/metabolismo , Animais , Disponibilidade Biológica , Barreira Hematoencefálica/metabolismo , Linhagem Celular , Citocromo P-450 CYP3A/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Distribuição Tecidual/fisiologia
10.
Int J Cancer ; 143(8): 2029-2038, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-29744867

RESUMO

Lorlatinib (PF-06463922) is a promising oral anaplastic lymphoma kinase (ALK) and ROS1 inhibitor currently in Phase III clinical trials for treatment of non-small-cell lung cancer (NSCLC) containing an ALK rearrangement. With therapy-resistant brain metastases a major concern in NSCLC, lorlatinib was designed to have high membrane and blood-brain barrier permeability. We investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3A in plasma pharmacokinetics and tissue distribution of lorlatinib using genetically modified mouse strains. In vitro, human ABCB1 and mouse Abcg2 modestly transported lorlatinib. Following oral lorlatinib administration (at 10 mg/kg), brain accumulation of lorlatinib, while relatively high in wild-type mice, was still fourfold increased in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- mice, but not in single Abcg2-/- mice. Lorlatinib plasma levels were not altered. Oral coadministration of the ABCB1/ABCG2 inhibitor elacridar increased the brain accumulation of lorlatinib in wild-type mice fourfold, that is, to the same level as in Abcb1a/1b;Abcg2-/- mice, without altering plasma exposure. Similar results were obtained for lorlatinib testis accumulation. In Cyp3a-/- mice, the plasma exposure of lorlatinib was increased 1.3-fold, but was then twofold reduced upon transgenic overexpression of human CYP3A4 in liver and intestine, whereas relative tissue distribution of lorlatinib remained unaltered. Our data indicate that lorlatinib brain accumulation is substantially limited by P-glycoprotein/ABCB1 in the blood-brain barrier, but this can be effectively reversed by elacridar coadministration. Moreover, oral availability of lorlatinib is markedly restricted by CYP3A4 activity. These insights may be used in optimizing the therapeutic application of lorlatinib.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Encéfalo/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Lactamas Macrocíclicas/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Administração Oral , Aminopiridinas , Animais , Disponibilidade Biológica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular , Cães , Feminino , Humanos , Lactamas , Lactamas Macrocíclicas/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Projetos Piloto , Pirazóis
11.
Mol Pharm ; 15(11): 5124-5134, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30247919

RESUMO

Ibrutinib (Imbruvica), an oral tyrosine kinase inhibitor (TKI) approved for treatment of B-cell malignancies, irreversibly inhibits the Bruton's tyrosine kinase (BTK). Its abundant metabolite, dihydrodiol-ibrutinib (ibrutinib-DiOH), which is primarily formed by CYP3A, has a 10-fold reduced BTK inhibitory activity. Using in vitro transport assays and genetically modified mouse models, we investigated whether the multidrug efflux transporters ABCB1 and ABCG2 and the multidrug-metabolizing CYP3A enzyme family can affect the oral bioavailability and tissue disposition of ibrutinib and ibrutinib-DiOH. In vitro, ibrutinib was transported moderately by human ABCB1 and mouse Abcg2 but not detectably by human ABCG2. In mice, Abcb1 markedly restricted the brain penetration of ibrutinib and ibrutinib-DiOH, either alone or in combination with Abcg2, resulting in 4.5- and 5.9-fold increases in ibrutinib brain-to-plasma ratios in Abcb1a/1b-/- and Abcb1a/1b;Abcg2-/- mice relative to wild-type mice. Abcb1 and/or Abcg2 did not obviously restrict ibrutinib oral bioavailability, but Cyp3a deficiency increased the ibrutinib plasma AUC by 9.7-fold compared to wild-type mice. This increase was mostly reversed (5.1-fold reduction) by transgenic human CYP3A4 overexpression, with roughly equal contributions of intestinal and hepatic CYP3A4 metabolism. Our results suggest that pharmacological inhibition of ABCB1 during ibrutinib therapy might benefit patients with malignancies or (micro)metastases positioned behind an intact blood-brain barrier, or with substantial expression of this transporter in the malignant cells. Moreover, given the strong in vivo impact of CYP3A, inhibitors or inducers of this enzyme family will likely strongly affect ibrutinib oral bioavailability and, thus, its therapeutic efficacy, as well as its toxicity risks.


Assuntos
Antineoplásicos/farmacocinética , Barreira Hematoencefálica/metabolismo , Citocromo P-450 CYP3A/metabolismo , Pirazóis/farmacocinética , Pirimidinas/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenina/análogos & derivados , Administração Oral , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Animais , Antineoplásicos/administração & dosagem , Citocromo P-450 CYP3A/genética , Cães , Feminino , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Piperidinas , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Distribuição Tecidual
12.
Pharmacol Res ; 137: 47-55, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253203

RESUMO

Brigatinib is an FDA-approved oral anaplastic lymphoma kinase (ALK) inhibitor for treatment of metastatic non-small cell lung cancer (NSCLC). Using genetically modified mouse models, we investigated the roles of the multidrug efflux transporters ABCB1 and ABCG2, and the multispecific drug-metabolizing enzyme CYP3 A in plasma pharmacokinetics and tissue distribution of brigatinib. In vitro, brigatinib was exceptionally well transported by human ABCB1 and mouse Abcg2, and efficiently by human ABCG2. Following oral brigatinib administration (10 mg/kg), brain accumulation was dramatically increased in Abcb1a/1b-/- (19.3-fold) and Abcb1a/1b;Abcg2-/-(41.8-fold), but not in single Abcg2-/- mice compared to wild-type mice. Brigatinib testis accumulation showed qualitatively similar behavior. mAbcb1a/1b and mAbcg2 together restricted systemic exposure of brigatinib: with both systems absent oral availability increased 1.9-fold. Coadministration of elacridar, an ABCB1/ABCG2 inhibitor, caused a pronounced increase (36-fold) in brain-to-plasma ratios of brigatinib, approaching the levels seen in Abcb1a/1b;Abcg2-/- mice. Unexpectedly, lethal toxicity of oral brigatinib was observed in mice with genetic knockout or pharmacological inhibition of mAbcb1a/1b and mAbcg2, indicating a pronounced protective role for these transporters. In Cyp3a-/- mice, brigatinib plasma exposure increased 1.3-fold, and was subsequently 1.8-fold reduced by transgenic overexpression of human CYP3 A4 in liver and intestine. The relative tissue distribution of brigatinib, however, remained unaltered. ABCB1 and ABCG2 thus limit brain accumulation, toxicity, and systemic exposure of brigatinib, whereas CYP3 A also markedly restricts its oral availability. Unexpected toxicities should therefore be carefully monitored when brigatinib is coadministered with ABCB1/ABCG2 inhibitors in patients. Collectively, these insights may support the clinical application of brigatinib.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Citocromo P-450 CYP3A/metabolismo , Proteínas de Neoplasias/metabolismo , Compostos Organofosforados/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Acridinas/farmacologia , Administração Oral , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Cães , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos Transgênicos , Proteínas de Neoplasias/genética , Compostos Organofosforados/sangue , Inibidores de Proteínas Quinases/sangue , Pirimidinas/sangue , Testículo/metabolismo , Tetra-Hidroisoquinolinas/farmacologia
13.
Pharmacol Res ; 129: 414-423, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29155017

RESUMO

Encorafenib (LGX818) is a promising BRAFV600E inhibitor that has efficacy against metastatic melanoma. To better understand its pharmacokinetics, we studied its interactions with the multidrug efflux transporters ABCB1 and ABCG2 and the multidrug metabolizing enzyme CYP3A. In polarized MDCK-II cells, encorafenib was efficiently transported by canine and human ABCB1 and ABCG2 and by mouse Abcg2. Upon oral administration to wild-type, Abcb1a/1b-/-, Abcg2-/-, and Abcb1a/1b;Abcg2-/- mice, encorafenib was absorbed very quickly and to very high plasma levels, but without clear changes in oral availability between the strains. Upon oral or intravenous administration, encorafenib brain accumulation was markedly increased in Abcb1a/1b;Abcg2-/- mice and to a lesser extent in Abcb1a/1b-/- mice. However, absolute brain concentrations and brain-to-plasma ratios remained very low in all strains, indicating intrinsically poor brain penetration of encorafenib. Upon intravenous administration, Abcb1a/1b;Abcg2-/- mice showed somewhat reduced plasma elimination of encorafenib compared to wild-type mice, and lower accumulation of the drug in the intestinal tract, suggesting a limited role for these transporters in intestinal elimination of the drug. In Cyp3a-/- mice plasma levels of encorafenib were not markedly increased, suggesting a limited impact of Cyp3a on encorafenib oral availability. The low brain penetration of encorafenib might limit its efficacy against malignancies positioned behind a functional blood-brain barrier, but its oral bioavailability and distribution to other tested organs (liver, kidney, spleen, testis) was high.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Carbamatos/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Sulfonamidas/farmacocinética , Transportadores de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Disponibilidade Biológica , Cães , Intestino Delgado/metabolismo , Células Madin Darby de Rim Canino , Camundongos Knockout , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Distribuição Tecidual
14.
Pharm Res ; 35(4): 85, 2018 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29516187

RESUMO

PURPOSE: Sepantronium bromide (YM155) is a hydrophilic quaternary compound that cannot be administered orally due to its low oral bioavailability; it is furthermore rapidly eliminated via the kidneys. The current study aims at improving the pharmacokinetic profile of YM155 by its formulation in immunoliposomes that can achieve its enhanced delivery into tumor tissue and facilitate uptake in neuroblastoma cancer cells. METHODS: PEGylated YM155 loaded liposomes composed of DPPC, cholesterol and DSPE-PEG2000 were prepared via passive film-hydration and extrusion method. Targeted (i.e. immuno-)liposomes were prepared by surface functionalization with SATA modified monoclonal anti-disialoganglioside (GD2) antibodies. Liposomes were characterized based on their size, charge, antibody coupling and YM155 encapsulation efficiency, and stability. Flow cytometry analysis and confocal microscopy were performed on IMR32 and KCNR neuroblastoma cell lines. The efficacy of developed formulations were assessed by in-vitro toxicity assays. A pilot pharmacokinetic analysis was performed to assess plasma circulation and tumor accumulation profiles of the developed liposomal formulations. RESULTS: YM155 loaded immunoliposomes had a size of 170 nm and zeta potential of -10 mV, with an antibody coupling efficiency of 60% andYM155 encapsulation efficiency of14%. Targeted and control liposomal formulations were found to have similar YM155 release rates in a release medium containing 50% serum. An in-vitro toxicity study on KCNR cells showed less toxicity for immunoliposomes as compared to free YM155. In-vivo pharmacokinetic evaluation of YM155 liposomes showed prolonged blood circulation and significantly increased half-lives of liposomal YM155 in tumor tissue, as compared to a bolus injection of free YM155. CONCLUSIONS: YM155 loaded immunoliposomes were successfully formulated and characterized, and initial in-vivo results show their potential for improving the circulation time and tumor accumulation of YM155.


Assuntos
Antineoplásicos/administração & dosagem , Composição de Medicamentos/métodos , Imidazóis/administração & dosagem , Naftoquinonas/administração & dosagem , Neuroblastoma/tratamento farmacológico , Animais , Anticorpos/imunologia , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Feminino , Gangliosídeos/imunologia , Gangliosídeos/metabolismo , Meia-Vida , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imidazóis/química , Imidazóis/farmacocinética , Injeções Intravenosas , Lipossomos , Camundongos , Camundongos Nus , Naftoquinonas/química , Naftoquinonas/farmacocinética , Neuroblastoma/imunologia , Neuroblastoma/patologia , Projetos Piloto , Polietilenoglicóis/química , Survivina/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Biomed Chromatogr ; 32(8): e4238, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29517154

RESUMO

Nephropathic cystinosis is characterized by abnormal intralysosomal accumulation of cystine throughout the body, causing irreversible damage to various organs, particularly the kidneys. Cysteamine, the currently available treatment, can reduce lysosomal cystine and postpone disease progression. However, cysteamine poses serious side effects and does not address all of the symptoms of cystinosis. To screen for new treatment options, a rapid and reliable high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to quantify cystine in conditionally immortalized human proximal tubular epithelial cells (ciPTEC). The ciPTEC were treated with N-ethylmaleimide, lysed and deproteinized with 15% (w/v) sulfosalicylic acid. Subsequently, cystine was measured using deuterium-labeled cystine-D4, as the internal standard. The assay developed demonstrated linearity to at least 20 µmol/L with a good precision. Accuracies were between 97.3 and 102.9% for both cell extracts and whole cell samples. Cystine was sufficiently stable under all relevant analytical conditions. The assay was successfully applied to determine cystine levels in both healthy and cystinotic ciPTEC. Control cells showed clearly distinguishable cystine levels compared with cystinotic cells treated with or without cysteamine. The method developed provides a fast and reliable quantification of cystine, and is applicable to screen for potential drugs that could reverse cystinotic symptoms in human kidney cells.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Cistina/análise , Túbulos Renais Proximais/química , Túbulos Renais Proximais/citologia , Espectrometria de Massas em Tandem/métodos , Linhagem Celular , Humanos , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes
16.
Mol Pharm ; 14(10): 3258-3268, 2017 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-28880088

RESUMO

Ponatinib is an oral BCR-ABL1 inhibitor for treatment of advanced leukemic diseases that carry the Philadelphia chromosome, specifically containing the T315I mutation yielding resistance to previously approved BCR-ABL1 inhibitors. Using in vitro transport assays and knockout mouse models, we investigated whether the multidrug efflux transporters ABCB1 and ABCG2 transport ponatinib and whether they, or the drug-metabolizing enzyme CYP3A, affect the oral availability and brain accumulation of ponatinib and its active N-desmethyl metabolite (DMP). In vitro, mouse Abcg2 and human ABCB1 modestly transported ponatinib. In mice, both Abcb1 and Abcg2 markedly restricted brain accumulation of ponatinib and DMP, but not ponatinib oral availability. Abcg2 deficiency increased DMP plasma levels ∼3-fold. Cyp3a deficiency increased the ponatinib plasma AUC 1.4-fold. Our results suggest that pharmacological inhibition of ABCG2 and ABCB1 during ponatinib therapy might benefit patients with brain (micro)metastases positioned behind an intact blood-brain barrier, or with substantial expression of these transporters in the malignant cells. CYP3A inhibitors might increase ponatinib oral availability, enhancing efficacy but possibly also toxicity of this drug.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Imidazóis/farmacologia , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridazinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/antagonistas & inibidores , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Disponibilidade Biológica , Transporte Biológico/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Citocromo P-450 CYP3A , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Cães , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/antagonistas & inibidores , Distribuição Tecidual
17.
Pharmacol Res ; 120: 43-50, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28288939

RESUMO

Afatinib is a highly selective, irreversible inhibitor of EGFR and HER-2. It is orally administered for the treatment of patients with EGFR mutation-positive types of metastatic NSCLC. We investigated whether afatinib is a substrate for the multidrug efflux transporters ABCB1 and ABCG2 and whether these transporters influence oral availability and brain and other tissue accumulation of afatinib. We used in vitro transport assays to assess human (h)ABCB1-, hABCG2- or murine (m)Abcg2-mediated transport of afatinib. To study the single and combined roles of Abcg2 and Abcb1a/1b in oral afatinib disposition, we used appropriate knockout mouse strains. Afatinib was transported well by hABCB1, hABCG2 and mAbcg2 in vitro. Upon oral administration of afatinib, Abcg2-/-, Abcb1a/1b-/- and Abcb1a/1b-/-;Abcg2-/- mice displayed a 4.2-, 2.4- and 7-fold increased afatinib plasma AUC0-24 compared with wild-type mice. Abcg2-deficient strains also displayed decreased afatinib plasma clearance. At 2h, relative brain accumulation of afatinib was not significantly altered in the single knockout strains, but 23.8-fold increased in Abcb1a/1b-/-;Abcg2-/- mice compared to wild-type mice. Abcg2 and Abcb1a/1b restrict oral availability and brain accumulation of afatinib. Inhibition of these transporters may therefore be of clinical importance for patients with brain (micro)metastases positioned behind an intact blood-brain barrier.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Quinazolinas/farmacocinética , Radiossensibilizantes/farmacocinética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Administração Oral , Afatinib , Animais , Transporte Biológico , Cães , Receptores ErbB/antagonistas & inibidores , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/metabolismo , Quinazolinas/administração & dosagem , Quinazolinas/metabolismo , Radiossensibilizantes/administração & dosagem , Radiossensibilizantes/metabolismo , Receptor ErbB-2/antagonistas & inibidores , Distribuição Tecidual
18.
Pharmacol Res ; 102: 200-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26361725

RESUMO

We aimed to clarify the roles of the multidrug transporters ABCB1 and ABCG2 in oral availability and brain accumulation of ceritinib, an oral anaplastic lymphoma kinase (ALK) inhibitor used to treat metastatic non-small cell lung cancer (NSCLC) after progression on crizotinib. Importantly, NSCLC is prone to form brain metastases. Transport of ceritinib by human (h) ABCB1 or hABCG2 or mouse (m) Abcg2 was assessed in vitro. To study the single and combined roles of Abcb1a/1b and Abcg2 in ceritinib disposition in vivo, we used appropriate knockout mouse strains. Ceritinib was very efficiently transported by hABCB1, and efficiently by hABCG2 and mAbcg2 in vitro, and transport was specifically inhibited by the ABCB1 inhibitor zosuquidar and ABCG2 inhibitor Ko143, respectively. Absorption and 24-h oral availability were not significantly affected by the absence of Abcb1 and/or Abcg2, but the brain concentrations were greatly increased (>38-fold) in Abcb1a/1b(-/-) mice at 3 and 24h after oral administration of 20mg/kg ceritinib. The brain concentrations increased another ∼ 3-fold (to >90-fold) in Abcb1a/1b;Abcg2(-/-) mice, indicating that there was a significant additional effect of Abcg2-mediated transport of ceritinib as well in vivo. Overall, brain accumulation, but not the 24-h oral availability of ceritinib were profoundly restricted by Abcb1a/1b and Abcg2, with Abcb1a/1b being the dominant efflux protein. Our data suggest that coadministration of ceritinib with a dual ABCB1 and ABCG2 inhibitor may improve treatment of brain (micro) metastases positioned behind a functionally intact blood-brain barrier, and possibly also of tumors resistant to ceritinib due to ABCB1 or ABCG2 overexpression.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Pirimidinas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sulfonas/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Quinase do Linfoma Anaplásico , Animais , Disponibilidade Biológica , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/efeitos dos fármacos , Crizotinibe , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Pirazóis/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Sulfonas/farmacologia , Distribuição Tecidual/fisiologia
19.
Pharm Res ; 32(7): 2205-16, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25563977

RESUMO

PURPOSE: Regorafenib is a novel multikinase inhibitor, currently approved for the treatment of metastasized colorectal cancer and advanced gastrointestinal stromal tumors. We investigated whether regorafenib is a substrate for the multidrug efflux transporters ABCG2 and ABCB1 and whether oral availability, brain and testis accumulation of regorafenib and its active metabolites are influenced by these transporters. METHODS: We used in vitro transport assays to assess human (h)ABCB1- or hABCG2- or murine (m)Abcg2-mediated active transport at high and low concentrations of regorafenib. To study the single and combined roles of Abcg2 and Abcb1a/1b in oral regorafenib disposition and the impact of Cyp3a-mediated metabolism, we used appropriate knockout mouse strains. RESULTS: Regorafenib was transported well by mAbcg2 and hABCG2 and modestly by hABCB1 in vitro. Abcg2 and to a lesser extent Abcb1a/1b limited brain and testis accumulation of regorafenib and metabolite M2 (brain only) in mice. Regorafenib oral availability was not increased in Abcg2(-/-);Abcb1a/1b(-/-) mice. Up till 2 h, metabolite M5 was undetectable in plasma and organs. CONCLUSIONS: Brain and testis accumulation of regorafenib and brain accumulation of metabolite M2 are restricted by Abcg2 and Abcb1a/1b. Inhibition of these transporters may be of clinical relevance for patients with brain (micro)metastases positioned behind an intact blood-brain barrier.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacocinética , Encéfalo/metabolismo , Proteínas de Neoplasias/metabolismo , Compostos de Fenilureia/farmacocinética , Piridinas/farmacocinética , Testículo/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Antineoplásicos/sangue , Antineoplásicos/metabolismo , Transporte Biológico , Cães , Humanos , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Compostos de Fenilureia/sangue , Compostos de Fenilureia/metabolismo , Piridinas/sangue , Piridinas/metabolismo , Distribuição Tecidual , Transfecção
20.
Pharm Res ; 32(1): 37-46, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24962512

RESUMO

BACKGROUND: Rucaparib is a potent, orally available, small-molecule inhibitor of poly ADP-ribose polymerase (PARP) 1 and 2. Ongoing clinical trials are assessing the efficacy of rucaparib alone or in combination with other cytotoxic drugs, mainly in breast and ovarian cancer patients with mutations in the breast cancer associated (BRCA) genes. PURPOSE: We aimed to establish whether the multidrug efflux transporters ABCG2 (BCRP) and ABCB1 (P-gp, MDR1) affect the oral availability and brain penetration of rucaparib in mice. RESULTS: In vitro, rucaparib was efficiently transported by both human ABCB1 and ABCG2, and very efficiently by mouse Abcg2. Transport could be inhibited by the small-molecule ABCB1 and ABCG2 inhibitors zosuquidar and Ko143, respectively. In vivo, oral availability (plasma AUC0-1 and AUC0-24) and brain levels of rucaparib at 1 and 24 h were increased by the absence of both Abcg2 and Abcb1a/1b after oral administration of rucaparib at 10 mg/kg. CONCLUSIONS: Our data show to our knowledge for the first time that oral availability and brain accumulation of a PARP inhibitor are markedly and additively restricted by Abcg2 and Abcb1a/1b. This may have clinical relevance for improvement of rucaparib therapy in PARP inhibitor-resistant tumors with ABCB1 and/or ABCG2 expression and in patients with brain (micro)metastases positioned behind a functional blood-brain barrier.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Encéfalo/metabolismo , Indóis/farmacocinética , Proteínas de Neoplasias/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Técnicas de Cultura de Células , Cães , Feminino , Humanos , Indóis/administração & dosagem , Indóis/sangue , Células Madin Darby de Rim Canino , Camundongos Knockout , Proteínas de Neoplasias/genética , Especificidade por Substrato , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa