Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(10): e2114674119, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35238685

RESUMO

SignificanceHere, we demonstrate that a naturally evolving behavior (allonursing) has greater effect on reproductive power (mass per unit of time) and output (litter mass at birth) than does artificial selection (domestication). Additionally, we demonstrate the importance of resource optimization afforded by sociality (rather than resource abundance per se) in shaping a species' life history profile and its ability to overcome its own physiological constraints.


Assuntos
Lactação , Tamanho da Ninhada de Vivíparos , Leite , Animais , Feminino , Masculino , Camundongos
2.
J Hum Evol ; 194: 103567, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068699

RESUMO

Hominoids exhibit a strikingly diverse set of locomotor adaptations-including knuckle-walking, brachiation, quadrumanuous suspension, and striding bipedalism-while also possessing morphologies associated with forelimb suspension. It has been suggested that changes in limb element integration facilitated the evolution of diverse locomotor modes by reducing covariation between serial homologs and allowing the evolution of a greater diversity of limb lengths. Here, I compare limb element integration in hominoids with that of other primate taxa, including two that have converged with them in forelimb morphology, Ateles and Pygathrix. Ateles is part of a clade that, such as hominoids, exhibits diverse locomotor adaptations, whereas Pygathrix is an anomaly in a much more homogeneous (in terms of locomotor adaptations) clade. I find that all atelines (and possibly all atelids), not just Ateles, share reduced limb element integration with hominoids. Pygathrix does not, however, instead resembling other members of its own family. Indriids also seem to have higher limb integration than apes, despite using their forelimbs and hindlimbs in divergent ways, although there is more uncertainty in this group due to poor sample size. These results suggest that reduced limb integration is characteristic of certain taxonomic groups with high locomotor diversity rather than taxa with specific, specialized locomotor adaptations. This is consistent with the hypothesis that reduced integration serves to open new areas of morphospace to those clades while suggesting that derived locomotion with divergent demands on limbs is not necessarily associated with reduced limb integration.

3.
J Hum Evol ; 179: 103355, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003245

RESUMO

Because the ulna supports and transmits forces during movement, its morphology can signal aspects of functional adaptation. To test whether, like extant apes, some hominins habitually recruit the forelimb in locomotion, we separate the ulna shaft and ulna proximal complex for independent shape analyses via elliptical Fourier methods to identify functional signals. We examine the relative influence of locomotion, taxonomy, and body mass on ulna contours in Homo sapiens (n = 22), five species of extant apes (n = 33), two Miocene apes (Hispanopithecus and Danuvius), and 17 fossil hominin specimens including Sahelanthropus, Ardipithecus, Australopithecus, Paranthropus, and early Homo. Ulna proximal complex contours correlate with body mass but not locomotor patterns, while ulna shafts significantly correlate with locomotion. African apes' ulna shafts are more robust and curved than Asian apes and are unlike other terrestrial mammals (including other primates), curving ventrally rather than dorsally. Because this distinctive curvature is absent in orangutans and hylobatids, it is likely a function of powerful flexors engaged in wrist and hand stabilization during knuckle-walking, and not an adaptation to climbing or suspensory behavior. The OH 36 (purported Paranthropus boisei) and TM 266 (assigned to Sahelanthropus tchadensis) fossils differ from other hominins by falling within the knuckle-walking morphospace, and thus appear to show forelimb morphology consistent with terrestrial locomotion. Discriminant function analysis classifies both OH 36 and TM 266 with Pan and Gorilla with high posterior probability. Along with its associated femur, the TM 266 ulna shaft contours and its deep, keeled trochlear notch comprise a suite of traits signaling African ape-like quadrupedalism. While implications for the phylogenetic position and hominin status of S. tchadensis remain equivocal, this study supports the growing body of evidence indicating that S. tchadensis was not an obligate biped, but instead represents a late Miocene hominid with knuckle-walking adaptations.


Assuntos
Hominidae , Animais , Hominidae/anatomia & histologia , Fósseis , Filogenia , Caminhada , Locomoção , Ulna/anatomia & histologia , Gorilla gorilla , Evolução Biológica , Mamíferos
4.
J Hum Evol ; 179: 103359, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37099927

RESUMO

The primate vertebral column has been extensively studied, with a particular focus on hominoid primates and the last common ancestor of humans and chimpanzees. The number of vertebrae in hominoids-up to and including the last common ancestor of humans and chimpanzees-is subject to considerable debate. However, few formal ancestral state reconstructions exist, and none include a broad sample of primates or account for the correlated evolution of the vertebral column. Here, we conduct an ancestral state reconstruction using a model of evolution that accounts for both homeotic (changes of one type of vertebra to another) and meristic (addition or loss of a vertebra) changes. Our results suggest that ancestral primates were characterized by 29 precaudal vertebrae, with the most common formula being seven cervical, 13 thoracic, six lumbar, and three sacral vertebrae. Extant hominoids evolved tail loss and a reduced lumbar column via sacralization (homeotic transition at the last lumbar vertebra). Our results also indicate that the ancestral hylobatid had seven cervical, 13 thoracic, five lumbar, and four sacral vertebrae, and the ancestral hominid had seven cervical, 13 thoracic, four lumbar, and five sacral vertebrae. The last common ancestor of humans and chimpanzees likely either retained this ancestral hominid formula or was characterized by an additional sacral vertebra, possibly acquired through a homeotic shift at the sacrococcygeal border. Our results support the 'short-back' model of hominin vertebral evolution, which postulates that hominins evolved from an ancestor with an African ape-like numerical composition of the vertebral column.


Assuntos
Hominidae , Humanos , Animais , Pan troglodytes , Evolução Biológica , Fósseis , Primatas , Vértebras Lombares/anatomia & histologia
5.
Horm Behav ; 156: 105437, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37806189

RESUMO

Oxytocin (OXT) is a neurohypophyseal hormone that influences a wide range of affiliative behaviors, such as pair-bonding and infant care, across mammals. The effects of OXT depend significantly on an adequate interaction with its receptor, OXTR. OXTR belongs to the G-protein coupled receptor family. The extracellular N-terminal domain of OXTR interacts with the linear C-terminal tail of OXT and is required for OXT binding. Across mammalian species there is a genetic diversity in OXTR terminal sequence. Previous work on primates has shown an association between OXTR phylogeny and monogamy. However, it is not clear whether this variation coevolved with either mating system (monogamy) or infant care behaviors (such as allomaternal care). Here, we take a phylogenetic comparative and evolutionary modeling approach across a wide range of placental mammals (n = 60) to test whether OXTR N-terminal variants co-evolved with either monogamy or allomaternal care behaviors. Our results indicate that the diversity in OXTR N-terminal region is unlikely to provide the underlying genetic bases for variation in mating system and/or allomaternal behavior as we find no evidence for co-evolution between protein sequence and affiliative behaviors. Hence, the role played by OXT in influencing affiliative behaviors is unlikely to be mediated by the genetic diversity of its receptor.


Assuntos
Eutérios , Receptores de Ocitocina , Humanos , Animais , Feminino , Gravidez , Receptores de Ocitocina/genética , Receptores de Ocitocina/metabolismo , Eutérios/metabolismo , Filogenia , Placenta/metabolismo , Ocitocina/genética , Ocitocina/metabolismo , Primatas/genética , Primatas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo
6.
Am J Biol Anthropol ; 184(3): e24920, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38447005

RESUMO

OBJECTIVES: Interpretations of the primate and human fossil record often rely on the estimation of somatic dimensions from bony measures. Both somatic and skeletal variation have been used to assess how primates respond to environmental change. However, it is unclear how well skeletal variation matches and predicts soft tissue. Here, we empirically test the relationship between tissues by comparing somatic and skeletal measures using paired measures of pre- and post-mortem rhesus macaques from Cayo Santiago, Puerto Rico. MATERIALS AND METHODS: Somatic measurements were matched with skeletal dimensions from 105 rhesus macaque individuals to investigate paired signals of variation (i.e., coefficients of variation, sexual dimorphism) and bivariate codependence (reduced major axis regression) in measures of: (1) limb length; (2) joint breadth; and (3) limb circumference. Predictive models for the estimation of soft tissue dimensions from skeletons were built from Ordinary Least Squares regressions. RESULTS: Somatic and skeletal measurements showed statistically equivalent coefficients of variation and sexual dimorphism as well as high epiphyses-present ordinary least square (OLS) correlations in limb lengths (R2 >0.78, 0.82), joint breadths (R2 >0.74, 0.83) and, to a lesser extent, limb circumference (R2 >0.53, 0.68). CONCLUSION: Skeletal measurements are good substitutions for somatic values based on population signals of variation. OLS regressions indicate that skeletal correlates are highly predictive of somatic dimensions. The protocols and regression equations established here provide a basis for reliable reconstruction of somatic dimension from catarrhine fossils and validate our ability to compare or combine results of studies based on population data of either hard or soft tissue proxies.


Assuntos
Osso e Ossos , Macaca mulatta , Animais , Macaca mulatta/anatomia & histologia , Feminino , Masculino , Porto Rico , Osso e Ossos/anatomia & histologia , Antropologia Física , Caracteres Sexuais , Extremidades/anatomia & histologia
7.
Am J Biol Anthropol ; 184(2): e24901, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445298

RESUMO

OBJECTIVES: Estimation of body mass from skeletal metrics can reveal important insights into the paleobiology of archeological or fossil remains. The standard approach constructs predictive equations from postcrania, but studies have questioned the reliability of traditional measures. Here, we examine several skeletal features to assess their accuracy in predicting body mass. MATERIALS AND METHODS: Antemortem mass measurements were compared with common skeletal dimensions from the same animals postmortem, using 115 rhesus macaques (male: n = 43; female: n = 72). Individuals were divided into training (n = 58) and test samples (n = 57) to build and assess Ordinary Least Squares or multivariate regressions by residual sum of squares (RSS) and AIC weights. A leave-one-out approach was implemented to formulate the best fit multivariate models, which were compared against a univariate and a previously published catarrhine body-mass estimation model. RESULTS: Femur circumference represented the best univariate model. The best model overall was composed of four variables (femur, tibia and fibula circumference and humerus length). By RSS and AICw, models built from rhesus macaque data (RSS = 26.91, AIC = -20.66) better predicted body mass than did the catarrhine model (RSS = 65.47, AIC = 20.24). CONCLUSION: Body mass in rhesus macaques is best predicted by a 4-variable equation composed of humerus length and hind limb midshaft circumferences. Comparison of models built from the macaque versus the catarrhine data highlight the importance of taxonomic specificity in predicting body mass. This paper provides a valuable dataset of combined somatic and skeletal data in a primate, which can be used to build body mass equations for fragmentary fossil evidence.


Assuntos
Macaca mulatta , Animais , Macaca mulatta/anatomia & histologia , Feminino , Masculino , Antropologia Física/métodos , Peso Corporal , Osso e Ossos/anatomia & histologia , Úmero/anatomia & histologia
9.
Nat Ecol Evol ; 3(6): 949-956, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31086278

RESUMO

Restricted variation in numbers of presacral vertebrae in mammals is a classic example of evolutionary stasis. Cervical number is nearly invariable in most mammals, and numbers of thoracolumbar vertebrae are also highly conserved. A recent hypothesis posits that stasis in mammalian presacral count is due to stabilizing selection against the production of incomplete homeotic transformations at the lumbo-sacral border in fast-running mammals, while slower, ambulatory mammals more readily tolerate intermediate lumbar/sacral vertebrae. We test hypotheses of variation in presacral numbers of vertebrae based on running speed, positional behaviour and vertebral contribution to locomotion. We find support for the hypothesis that selection against changes in presacral vertebral number led to stasis in mammals that rely on dorsomobility of the spine during running and leaping, but our results are independent of running speed per se. Instead, we find that mammals adapted to dorsostability of the spine, such as those that engage in suspensory behaviour, demonstrate elevated variation in numbers of presacral vertebrae compared to dorsomobile mammals. We suggest that the evolution of dorsostability and reduced reliance on flexion and extension of the spine allowed for increased variation in numbers of presacral vertebrae, leading to departures from an otherwise stable evolutionary pattern.


Assuntos
Mamíferos , Coluna Vertebral , Animais , Locomoção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa