Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
3.
Integr Zool ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884464

RESUMO

Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits of Podarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co-occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph-dependent manner-the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white-yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments.

4.
J Exp Zool A Ecol Integr Physiol ; 335(1): 13-44, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32638552

RESUMO

Research on the thermal ecology and physiology of free-living organisms is accelerating as scientists and managers recognize the urgency of the global biodiversity crisis brought on by climate change. As ectotherms, temperature fundamentally affects most aspects of the lives of amphibians and reptiles, making them excellent models for studying how animals are impacted by changing temperatures. As research on this group of organisms accelerates, it is essential to maintain consistent and optimal methodology so that results can be compared across groups and over time. This review addresses the utility of reptiles and amphibians as model organisms for thermal studies by reviewing the best practices for research on their thermal ecology and physiology, and by highlighting key studies that have advanced the field with new and improved methods. We end by presenting several areas where reptiles and amphibians show great promise for further advancing our understanding of how temperature relations between organisms and their environments are impacted by global climate change.


Assuntos
Anfíbios/fisiologia , Temperatura Corporal/fisiologia , Ecossistema , Répteis/fisiologia , Anfíbios/embriologia , Anfíbios/crescimento & desenvolvimento , Animais , Embrião não Mamífero/fisiologia , Monitorização Fisiológica , Répteis/embriologia , Répteis/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa