Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
1.
Neurobiol Dis ; 186: 106285, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690676

RESUMO

Neurodegenerative disorders of aging are characterized by the progressive accumulation of proteins such as α-synuclein (α-syn) and amyloid beta (Aß). Misfolded and aggregated α-syn has been implicated in neurological disorders such as Parkinson's disease, and Dementia with Lewy Bodies, but less so in Alzheimer's Disease (AD), despite the fact that accumulation of α-syn has been confirmed in over 50% of postmortem brains neuropathologically diagnosed with AD. To date, no therapeutic strategy has effectively or consistently downregulated α-syn in AD. Here we tested the hypothesis that by using a systemically-delivered peptide (ApoB11) bound to a modified antisense oligonucleotide against α-syn (ASO-α-syn), we can downregulate α-syn expression in an AD mouse model and improve behavioral and neuropathologic phenotypes. Our results demonstrate that monthly systemic treatment with of ApoB11:ASO α-syn beginning at 6 months of age reduces expression of α-synuclein in the brains of 9-month-old AD mice. Downregulation of α-syn led to reduction in Aß plaque burden, prevented neuronal loss and astrogliosis. Furthermore, we found that AD mice treated with ApoB11:ASO α-syn had greatly improved hippocampal and spatial memory function in comparison to their control counterparts. Collectively, our data supports the reduction of α-syn through use of systemically-delivered ApoB11:ASO α-syn as a promising future disease-modifying therapeutic for AD.


Assuntos
Doença de Alzheimer , Oligonucleotídeos Antissenso , Animais , Camundongos , Oligonucleotídeos Antissenso/farmacologia , alfa-Sinucleína/genética , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Apolipoproteínas B , Modelos Animais de Doenças
2.
Neurobiol Dis ; 178: 106010, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36702318

RESUMO

Mutations or triplication of the alpha synuclein (ASYN) gene contribute to synucleinopathies including Parkinson's disease (PD), Dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent evidence suggests that ASYN also plays an important role in amyloid-induced neurotoxicity, although the mechanism(s) remains unknown. One hypothesis is that accumulation of ASYN alters endolysosomal pathways to impact axonal trafficking and processing of the amyloid precursor protein (APP). To define an axonal function for ASYN, we used a transgenic mouse model of synucleinopathy that expresses a GFP-human ASYN (GFP-hASYN) transgene and an ASYN knockout (ASYN-/-) mouse model. Our results demonstrate that expression of GFP-hASYN in primary neurons derived from a transgenic mouse impaired axonal trafficking and processing of APP. In addition, axonal transport of BACE1, Rab5, Rab7, lysosomes and mitochondria were also reduced in these neurons. Interestingly, axonal transport of these organelles was also affected in ASYN-/- neurons, suggesting that ASYN plays an important role in maintaining normal axonal transport function. Therefore, selective impairment of trafficking and processing of APP by ASYN may act as a potential mechanism to induce pathological features of Alzheimer's disease (AD) in PD patients.


Assuntos
Doença de Parkinson , Sinucleinopatias , Humanos , Camundongos , Animais , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Secretases da Proteína Precursora do Amiloide , Precursor de Proteína beta-Amiloide/genética , Ácido Aspártico Endopeptidases , Doença de Parkinson/genética , Camundongos Transgênicos , Lisossomos/metabolismo
3.
Proc Natl Acad Sci U S A ; 115(28): E6428-E6436, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29941560

RESUMO

Transthyretin (TTR) is a globular tetrameric transport protein in plasma. Nearly 140 single amino acid substitutions in TTR cause life-threatening amyloid disease. We report a one-of-a-kind pathological variant featuring a Glu51, Ser52 duplication mutation (Glu51_Ser52dup). The proband, heterozygous for the mutation, exhibited an unusually aggressive amyloidosis that was refractory to treatment with the small-molecule drug diflunisal. To understand the poor treatment response and expand therapeutic options, we explored the structure and stability of recombinant Glu51_Ser52dup. The duplication did not alter the protein secondary or tertiary structure but decreased the stability of the TTR monomer and tetramer. Diflunisal, which bound with near-micromolar affinity, partially restored tetramer stability. The duplication had no significant effect on the free energy and enthalpy of diflunisal binding, and hence on the drug-protein interactions. However, the duplication induced tryptic digestion of TTR at near-physiological conditions, releasing a C-terminal fragment 49-129 that formed amyloid fibrils under conditions in which the full-length protein did not. Such C-terminal fragments, along with the full-length TTR, comprise amyloid deposits in vivo. Bioinformatics and structural analyses suggested that increased disorder in the surface loop, which contains the Glu51_Ser52dup duplication, not only helped generate amyloid-forming fragments but also decreased structural protection in the amyloidogenic residue segment 25-34, promoting misfolding of the full-length protein. Our studies of a unique duplication mutation explain its diflunisal-resistant nature, identify misfolding pathways for amyloidogenic TTR variants, and provide therapeutic targets to inhibit amyloid fibril formation by variant TTR.


Assuntos
Neuropatias Amiloides Familiares , Amiloide , Diflunisal/uso terapêutico , Resistência a Medicamentos , Modelos Moleculares , Pré-Albumina , Amiloide/química , Amiloide/genética , Amiloide/metabolismo , Neuropatias Amiloides Familiares/tratamento farmacológico , Neuropatias Amiloides Familiares/genética , Neuropatias Amiloides Familiares/metabolismo , Feminino , Humanos , Masculino , Mutação , Pré-Albumina/química , Pré-Albumina/genética , Pré-Albumina/metabolismo , Estrutura Secundária de Proteína
4.
Neurobiol Dis ; 127: 163-177, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849508

RESUMO

Neurodegenerative disorders of the aging population are characterized by progressive accumulation of neuronal proteins such as α-synuclein (α-syn) in Parkinson's Disease (PD) and Amyloid ß (Aß) and Tau in Alzheimer's disease (AD) for which no treatments are currently available. The ability to regulate the expression at the gene transcription level would be beneficial for reducing the accumulation of these proteins or regulating expression levels of other genes in the CNS. Short interfering RNA molecules can bind specifically to target RNAs and deliver them for degradation. This approach has shown promise therapeutically in vitro and in vivo in mouse models of PD and AD and other neurological disorders; however, delivery of the siRNA to the CNS in vivo has been achieved primarily through intra-cerebral or intra-thecal injections that may be less amenable for clinical translation; therefore, alternative approaches for delivery of siRNAs to the brain is needed. Recently, we described a small peptide from the envelope protein of the rabies virus (C2-9r) that was utilized to deliver an siRNA targeting α-syn across the blood brain barrier (BBB) following intravenous injection. This approach showed reduced expression of α-syn and neuroprotection in a toxic mouse model of PD. However, since receptor-mediated delivery is potentially saturable, each allowing the delivery of a limited number of molecules, we identified an alternative peptide for the transport of nucleotides across the BBB based on the apolipoprotein B (apoB) protein targeted to the family of low-density lipoprotein receptors (LDL-R). We used an 11-amino acid sequence from the apoB protein (ApoB11) that, when coupled with a 9-amino acid arginine linker, can transport siRNAs across the BBB to neuronal and glial cells. To examine the value of this peptide mediated oligonucleotide delivery system for PD, we delivered an siRNA targeting the α-syn (siα-syn) in a transgenic mouse model of PD. We found that ApoB11 was effective (comparable to C2-9r) at mediating the delivery of siα-syn into the CNS, co-localized to neurons and glial cells and reduced levels of α-syn protein translation and accumulation. Delivery of ApoB11/siα-syn was accompanied by protection from degeneration of selected neuronal populations in the neocortex, limbic system and striato-nigral system and reduced neuro-inflammation. Taken together, these results suggest that systemic delivery of oligonucleotides targeting α-syn using ApoB11 might be an interesting alternative strategy worth considering for the experimental treatment of synucleinopathies.


Assuntos
Doença por Corpos de Lewy/terapia , Degeneração Neural/terapia , alfa-Sinucleína/metabolismo , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Vetores Genéticos , Doença por Corpos de Lewy/genética , Doença por Corpos de Lewy/metabolismo , Camundongos , Camundongos Transgênicos , Degeneração Neural/genética , Degeneração Neural/metabolismo , Neurônios/metabolismo , RNA Interferente Pequeno/administração & dosagem , Receptores de LDL/genética , Receptores de LDL/metabolismo , alfa-Sinucleína/genética
6.
Neurobiol Dis ; 132: 104582, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31445162

RESUMO

There are no approved drug therapies that can prevent or slow the progression of Parkinson's disease (PD). Accumulation and aggregation of α-synuclein protein is observed throughout the nervous system in PD. α-Synuclein is a core component of Lewy bodies and neurites that neuropathologically define PD, suggesting that α-synuclein may be a key causative agent in PD. Recent experimental data suggest that PD progression may arise due to spreading of pathological forms of extracellular α-synuclein throughout the brain via a cellular release, uptake and seeding mechanism. We have developed a high affinity α-synuclein antibody, MEDI1341, that can enter the brain, sequester extracellular α-synuclein and attenuate α-synuclein spreading in vivo. MEDI1341 binds both monomeric and aggregated forms of α-synuclein. In vitro, MEDI1341 blocks cell-to-cell transmission of pathologically relevant α-synuclein preformed fibrils (pffs). After intravenous injection into rats and cynomolgus monkeys, MEDI1341 rapidly enters the central nervous system and lowers free extracellular α-synuclein levels in the interstitial fluid (ISF) and cerebrospinal fluid (CSF) compartments. Using a novel lentiviral-based in vivo mouse model of α-synuclein spreading in the brain, we show that treatment with MEDI1341 significantly reduces α-synuclein accumulation and propagation along axons. In this same model, we demonstrate that an effector-null version of the antibody was equally as effective as one with effector function. MEDI1341 is now in Phase 1 human clinical trial testing as a novel treatment for α-synucleinopathies including PD with the aim to slow or halt disease progression.


Assuntos
Anticorpos Monoclonais/farmacologia , Encéfalo/efeitos dos fármacos , alfa-Sinucleína/antagonistas & inibidores , Animais , Especificidade de Anticorpos , Humanos , Macaca fascicularis , Camundongos , Ratos
7.
Alzheimers Dement ; 15(9): 1133-1148, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31378574

RESUMO

INTRODUCTION: Immunotherapeutic approaches targeting amyloid ß (Aß) protein and tau in Alzheimer's disease and α-synuclein (α-syn) in Parkinson's disease are being developed for treating dementia with Lewy bodies. However, it is unknown if single or combined immunotherapies targeting Aß and/or α-syn may be effective. METHODS: Amyloid precursor protein/α-syn tg mice were immunized with AFFITOPEs® (AFF) peptides specific to Aß (AD02) or α-syn (PD-AFF1) and the combination. RESULTS: AD02 more effectively reduced Aß and pTau burden; however, the combination exhibited some additive effects. Both AD02 and PD-AFF1 effectively reduced α-syn, ameliorated degeneration of pyramidal neurons, and reduced neuroinflammation. PD-AFF1 more effectively ameliorated cholinergic and dopaminergic fiber loss; the combined immunization displayed additive effects. AD02 more effectively improved buried pellet test behavior, whereas PD-AFF1 more effectively improved horizontal beam test; the combined immunization displayed additive effects. DISCUSSION: Specific active immunotherapy targeting Aß and/or α-syn may be of potential interest for the treatment of dementia with Lewy bodies.


Assuntos
Peptídeos beta-Amiloides/imunologia , Imunoterapia , Doença por Corpos de Lewy/imunologia , alfa-Sinucleína/imunologia , Doença de Alzheimer , Animais , Humanos , Fatores Imunológicos , Camundongos , Doença de Parkinson
8.
J Neurochem ; 147(6): 784-802, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30152135

RESUMO

Neuroinflammation is a common pathological correlate of HIV-associated neurocognitive disorders (HAND) in individuals on antiretroviral therapy (ART). Triggering receptor expressed on myeloid cells 2 (TREM2) regulates neuroinflammation, clears extracellular Amyloid (A)-ß, surveys for damaged neurons, and orchestrates microglial differentiation. TREM2 has not been studied in HIV+ brain tissues. In this retrospective study, we investigated TREM2 expression levels and localization to microglia, Aß protein levels, and tumor necrosis factor (TNF)-α transcript levels in the frontal cortices of 52 HIV+ decedents. All donors had been on ART; 14 were cognitively normal (CN), 17 had an asymptomatic neurocognitive impairment (ANI), and 21 had a minor neurocognitive disorder (MND). Total TREM2 protein levels were increased in the soluble and decreased in the membrane-enriched fractions of MND brain tissues compared to CN; however, brains from MND Hispanics showed the most robust alterations in TREM2 as well as significantly increased TNF-α mRNA and Aß levels when compared to CN Hispanics. Significant alterations in the expression of total TREM2 protein and transcripts for TNF-α were not observed in non-Hispanics, despite higher levels of Aß in the non-Hispanic CN group compared to the non-Hispanic MND groups. These findings show that decreased and increased TREM2 in membrane-bound fractions and in soluble-enriched fractions, respectively, is associated with increased Aß and neuroinflammation in this cohort of HIV+ brains, particularly those identifying as Hispanics. These findings suggest a role for TREM2 in the brain of HIV+ individuals may deserve more investigation as a biomarker for HAND and as a possible therapeutic target. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Complexo AIDS Demência/metabolismo , Complexo AIDS Demência/psicologia , Peptídeos beta-Amiloides/metabolismo , Terapia Antirretroviral de Alta Atividade , Química Encefálica , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/psicologia , Glicoproteínas de Membrana/metabolismo , Receptores Imunológicos/metabolismo , Complexo AIDS Demência/tratamento farmacológico , Adulto , Peptídeos beta-Amiloides/análise , Biomarcadores , Etnicidade , Feminino , Soropositividade para HIV , Hispânico ou Latino , Humanos , Masculino , Glicoproteínas de Membrana/análise , Microglia/metabolismo , Pessoa de Meia-Idade , Testes Neuropsicológicos , RNA Mensageiro/análise , RNA Mensageiro/biossíntese , Receptores Imunológicos/análise , Estudos Retrospectivos , Fator de Necrose Tumoral alfa/metabolismo
9.
Hum Mol Genet ; 25(6): 1100-15, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26740557

RESUMO

α-Synuclein (α-syn) has been implicated in neurological disorders with parkinsonism, including Parkinson's disease and Dementia with Lewy body. Recent studies have shown α-syn oligomers released from neurons can propagate from cell-to-cell in a prion-like fashion exacerbating neurodegeneration. In this study, we examined the role of the endosomal sorting complex required for transport (ESCRT) pathway on the propagation of α-syn. α-syn, which is transported via the ESCRT pathway through multivesicular bodies for degradation, can also target the degradation of the ESCRT protein-charged multivesicular body protein (CHMP2B), thus generating a roadblock of endocytosed α-syn. Disruption of the ESCRT transport system also resulted in increased exocytosis of α-syn thus potentially increasing cell-to-cell propagation of synuclein. Conversely, delivery of a lentiviral vector overexpressing CHMP2B rescued the neurodegeneration in α-syn transgenic mice. Better understanding of the mechanisms of intracellular trafficking of α-syn might be important for understanding the pathogenesis and developing new treatments for synucleinopathies.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Doença por Corpos de Lewy/metabolismo , alfa-Sinucleína/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Linhagem Celular , Modelos Animais de Doenças , Humanos , Corpos de Lewy/metabolismo , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Neurônios/metabolismo , Neurônios/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia
10.
Hum Mol Genet ; 25(13): 2645-2660, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126635

RESUMO

Mutations in GBA1, the gene encoding glucocerebrosidase, are associated with an enhanced risk of developing synucleinopathies such as Parkinson's disease (PD) and dementia with Lewy bodies. A higher prevalence and increased severity of motor and non-motor symptoms is observed in PD patients harboring mutant GBA1 alleles, suggesting a link between the gene or gene product and disease development. Interestingly, PD patients without mutations in GBA1 also exhibit lower levels of glucocerebrosidase activity in the central nervous system (CNS), implicating this lysosomal enzyme in disease pathogenesis. Here, we investigated whether modulation of glucocerebrosidase activity in murine models of synucleinopathy (expressing wild type Gba1) affected α-synuclein accumulation and behavioral phenotypes. Partial inhibition of glucocerebrosidase activity in PrP-A53T-SNCA mice using the covalent inhibitor conduritol-B-epoxide induced a profound increase in soluble α-synuclein in the CNS and exacerbated cognitive and motor deficits. Conversely, augmenting glucocerebrosidase activity in the Thy1-SNCA mouse model of PD delayed the progression of synucleinopathy. Adeno-associated virus-mediated expression of glucocerebrosidase in the Thy1-SNCA mouse striatum led to decrease in the levels of the proteinase K-resistant fraction of α-synuclein, amelioration of behavioral aberrations and protection from loss of striatal dopaminergic markers. These data indicate that increasing glucocerebrosidase activity can influence α-synuclein homeostasis, thereby reducing the progression of synucleinopathies. This study provides robust in vivo evidence that augmentation of CNS glucocerebrosidase activity is a potential therapeutic strategy for PD, regardless of the mutation status of GBA1.


Assuntos
Glucosilceramidase/metabolismo , Glucosilceramidase/fisiologia , Animais , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina , Doença de Gaucher/genética , Expressão Gênica , Glucosilceramidase/genética , Glucosilceramidase/uso terapêutico , Humanos , Camundongos , Atividade Motora/efeitos dos fármacos , Mutação , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , alfa-Sinucleína/líquido cefalorraquidiano , alfa-Sinucleína/metabolismo
11.
Acta Neuropathol ; 136(1): 69-87, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29934874

RESUMO

Alzheimer's disease (AD) is the most common form of dementia in the elderly affecting more than 5 million people in the U.S. AD is characterized by the accumulation of ß-amyloid (Aß) and Tau in the brain, and is manifested by severe impairments in memory and cognition. Therefore, removing tau pathology has become one of the main therapeutic goals for the treatment of AD. Tau (tubulin-associated unit) is a major neuronal cytoskeletal protein found in the CNS encoded by the gene MAPT. Alternative splicing generates two major isoforms of tau containing either 3 or 4 repeat (R) segments. These 3R or 4RTau species are differentially expressed in neurodegenerative diseases. Previous studies have been focused on reducing Tau accumulation with antibodies against total Tau, 4RTau or phosphorylated isoforms. Here, we developed a brain penetrating, single chain antibody that specifically recognizes a pathogenic 3RTau. This single chain antibody was modified by the addition of a fragment of the apoB protein to facilitate trafficking into the brain, once in the CNS these antibody fragments reduced the accumulation of 3RTau and related deficits in a transgenic mouse model of tauopathy. NMR studies showed that the single chain antibody recognized an epitope at aa 40-62 of 3RTau. This single chain antibody reduced 3RTau transmission and facilitated the clearance of Tau via the endosomal-lysosomal pathway. Together, these results suggest that targeting 3RTau with highly specific, brain penetrating, single chain antibodies might be of potential value for the treatment of tauopathies such as Pick's Disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Expansão das Repetições de DNA/genética , Doença de Pick/tratamento farmacológico , Anticorpos de Cadeia Única/uso terapêutico , Proteínas tau/genética , Proteínas tau/imunologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Apolipoproteínas B/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Linhagem Celular Transformada , Técnicas de Cocultura , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuroblastoma/patologia , Fosforilação , Doença de Pick/genética , Doença de Pick/patologia , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteínas tau/metabolismo
12.
Nature ; 489(7415): 304-8, 2012 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-22972301

RESUMO

Embryonic stem cells can replicate continuously in the absence of senescence and, therefore, are immortal in culture. Although genome stability is essential for the survival of stem cells, proteome stability may have an equally important role in stem-cell identity and function. Furthermore, with the asymmetric divisions invoked by stem cells, the passage of damaged proteins to daughter cells could potentially destroy the resulting lineage of cells. Therefore, a firm understanding of how stem cells maintain their proteome is of central importance. Here we show that human embryonic stem cells (hESCs) exhibit high proteasome activity that is correlated with increased levels of the 19S proteasome subunit PSMD11 (known as RPN-6 in Caenorhabditis elegans) and a corresponding increased assembly of the 26S/30S proteasome. Ectopic expression of PSMD11 is sufficient to increase proteasome assembly and activity. FOXO4, an insulin/insulin-like growth factor-I (IGF-I) responsive transcription factor associated with long lifespan in invertebrates, regulates proteasome activity by modulating the expression of PSMD11 in hESCs. Proteasome inhibition in hESCs affects the expression of pluripotency markers and the levels of specific markers of the distinct germ layers. Our results suggest a new regulation of proteostasis in hESCs that links longevity and stress resistance in invertebrates to hESC function and identity.


Assuntos
Células-Tronco Embrionárias/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas de Ciclo Celular , Diferenciação Celular , Linhagem Celular , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Fatores de Transcrição Forkhead , Células HEK293 , Humanos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Inibidores de Proteassoma , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Regulação para Cima
13.
J Neurosci ; 36(30): 7971-84, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27466341

RESUMO

UNLABELLED: Alzheimer's disease (AD) is characterized by the progressive accumulation of amyloid ß (Aß) and microtubule associate protein tau, leading to the selective degeneration of neurons in the neocortex, limbic system, and nucleus basalis, among others. Recent studies have shown that α-synuclein (α-syn) also accumulates in the brains of patients with AD and interacts with Aß and tau, forming toxic hetero-oligomers. Although the involvement of α-syn has been investigated extensively in Lewy body disease, less is known about the role of this synaptic protein in AD. Here, we found that reducing endogenous α-syn in an APP transgenic mouse model of AD prevented the degeneration of cholinergic neurons, ameliorated corresponding deficits, and recovered the levels of Rab3a and Rab5 proteins involved in intracellular transport and sorting of nerve growth factor and brain-derived neurotrophic factor. Together, these results suggest that α-syn might participate in mechanisms of vulnerability of selected neuronal populations in AD and that reducing α-syn might be a potential approach to protecting these populations from the toxic effects of Aß. SIGNIFICANCE STATEMENT: Reducing endogenous α-synuclein (α-syn) in an APP transgenic mouse model of Alzheimer's disease (AD) prevented the degeneration of cholinergic neurons, ameliorated corresponding deficits, and recovered the levels of Rab3a and Rab5 proteins involved in intracellular transport and sorting of nerve growth factor and brain-derived neurotrophic factor. These results suggest that α-syn might participate in mechanisms of vulnerability of selected neuronal populations in AD and that reducing α-syn might be a potential approach to protecting these populations from the toxic effects of amyloid ß.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Neurônios/metabolismo , Neurônios/patologia , alfa-Sinucleína/metabolismo , Animais , Encéfalo/patologia , Regulação para Baixo/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , alfa-Sinucleína/genética , Proteína rab3A de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo
14.
J Biol Chem ; 291(4): 1905-1920, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26620558

RESUMO

Neuropeptide Y (NPY) is one of the most abundant protein transmitters in the central nervous system with roles in a variety of biological functions including: food intake, cardiovascular regulation, cognition, seizure activity, circadian rhythms, and neurogenesis. Reduced NPY and NPY receptor expression is associated with numerous neurodegenerative disorders including Alzheimer disease (AD). To determine whether replacement of NPY could ameliorate some of the neurodegenerative and behavioral pathology associated with AD, we generated a lentiviral vector expressing NPY fused to a brain transport peptide (apoB) for widespread CNS delivery in an APP-transgenic (tg) mouse model of AD. The recombinant NPY-apoB effectively reversed neurodegenerative pathology and behavioral deficits although it had no effect on accumulation of Aß. The subgranular zone of the hippocampus showed a significant increase in proliferation of neural precursor cells without further differentiation into neurons. The neuroprotective and neurogenic effects of NPY-apoB appeared to involve signaling via ERK and Akt through the NPY R1 and NPY R2 receptors. Thus, widespread CNS-targeted delivery of NPY appears to be effective at reversing the neuronal and glial pathology associated with Aß accumulation while also increasing NPC proliferation. Overall, increased delivery of NPY to the CNS for AD might be an effective therapy especially if combined with an anti-Aß therapeutic.


Assuntos
Doença de Alzheimer/fisiopatologia , Proliferação de Células , Sistema Nervoso Central/citologia , Modelos Animais de Doenças , Células-Tronco Neurais/citologia , Neurogênese , Neuropeptídeo Y/genética , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Sistema Nervoso Central/metabolismo , Técnicas de Transferência de Genes , Terapia Genética , Humanos , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ratos
15.
J Neurovirol ; 23(2): 290-303, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28105557

RESUMO

Despite the success of antiretroviral therapies to control systemic HIV-1 infection, the prevalence of HIV-associated neurocognitive disorders (HANDs) has not decreased among aging patients with HIV. Autophagy pathway alterations, triggered by HIV-1 proteins including gp120, Tat, and Nef, might contribute to the neurodegenerative process in aging patients with HAND. Although no treatments are currently available to manage HAND, we have previously shown that sunitinib, an anticancer drug that blocks receptor tyrosine-kinase and cyclin kinase pathways, might be of interest. Studies in cancer models suggest that sunitinib might also modulate autophagy, which is dysregulated in our models of Tat-induced neurotoxicity. We evaluated the efficacy of sunitinib to promote autophagy in the CNS and ameliorate neurodegeneration using LC3-GFP-expressing neuronal cells challenged with low concentrations of Tat and using inducible Tat transgenic mice. In neuronal cultures challenged with low levels of Tat, sunitinib increased markers of autophagy such as LC3-II and reduced p62 accumulation in a dose-dependent manner. In vivo, sunitinib treatment restored LC3-II, p62, and endophilin B1 (EndoB1) levels in doxycycline-induced Tat transgenic mice. Moreover, in these animals, sunitinib reduced the hyperactivation of CDK5, tau hyperphosphorylation, and p35 cleavage to p25. Restoration of CDK5 and autophagy were associated with reduced neurodegeneration and behavioral alterations. Alterations in autophagy in the Tat tg mice were associated with reduced levels of a CDK5 substrate, EndoB1, and levels of total EndoB1 were normalized by sunitinib treatment. We conclude that sunitinib might ameliorate Tat-mediated autophagy alterations and may decrease neurodegeneration in aging patients with HAND.


Assuntos
Antineoplásicos/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Indóis/farmacologia , Pirróis/farmacologia , Transgenes , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Disfunção Cognitiva/virologia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Regulação da Expressão Gênica , Infecções por HIV/complicações , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , HIV-1/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Neurônios/virologia , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Sunitinibe , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo
16.
Brain ; 139(Pt 12): 3217-3236, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27679481

RESUMO

Abnormal accumulation and propagation of the neuronal protein α-synuclein has been hypothesized to underlie the pathogenesis of Parkinson's disease, dementia with Lewy bodies and multiple system atrophy. Here we report a de novo-developed compound (NPT100-18A) that reduces α-synuclein toxicity through a novel mechanism that involves displacing α-synuclein from the membrane. This compound interacts with a domain in the C-terminus of α-synuclein. The E83R mutation reduces the compound interaction with the 80-90 amino acid region of α-synuclein and prevents the effects of NPT100-18A. In vitro studies showed that NPT100-18A reduced the formation of wild-type α-synuclein oligomers in membranes, reduced the neuronal accumulation of α-synuclein, and decreased markers of cell toxicity. In vivo studies were conducted in three different α-synuclein transgenic rodent models. Treatment with NPT100-18A ameliorated motor deficits in mThy1 wild-type α-synuclein transgenic mice in a dose-dependent manner at two independent institutions. Neuropathological examination showed that NPT100-18A decreased the accumulation of proteinase K-resistant α-synuclein aggregates in the CNS and was accompanied by the normalization of neuronal and inflammatory markers. These results were confirmed in a mutant line of α-synuclein transgenic mice that is prone to generate oligomers. In vivo imaging studies of α-synuclein-GFP transgenic mice using two-photon microscopy showed that NPT100-18A reduced the cortical synaptic accumulation of α-synuclein within 1 h post-administration. Taken together, these studies support the notion that altering the interaction of α-synuclein with the membrane might be a feasible therapeutic approach for developing new disease-modifying treatments of Parkinson's disease and other synucleinopathies.


Assuntos
Antiparkinsonianos/farmacologia , Comportamento Animal/efeitos dos fármacos , Descoberta de Drogas , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Camundongos , Camundongos Transgênicos
17.
J Neurosci ; 35(5): 1921-38, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653352

RESUMO

Antiretroviral therapy has increased the life span of HIV+ individuals; however, HIV-associated neurocognitive disorder (HAND) occurrence is increasing in aging HIV patients. Previous studies suggest HIV infection alters autophagy function in the aging CNS and HIV-1 proteins affect autophagy in monocyte-derived cells. Despite these findings, the mechanisms leading to dysregulated autophagy in the CNS remain unclear. Here we sought to determine how HIV Tat dysregulates autophagy in neurons. Tat caused a dose-dependent decrease in autophagosome markers, microtubule-associated protein-1 light chain ß II (LC3II), and sequestosome 1(SQSTM1), in a membrane-enriched fraction, suggesting Tat increases autophagic degradation. Bafilomycin A1 increased autophagosome number, LC3II, and SQSTM1 accumulation; Tat cotreatment diminished this effect. Tat had no effect when 3-methyladenine or knockdown of beclin 1 blocked early stages of autophagy. Tat increased numbers of LC3 puncta and resulted in the formation of abnormal autophagosomes in vitro. Likewise, in vivo studies in GFAP-Tat tg mice showed increased autophagosome accumulation in neurons, altered LC3II levels, and neurodegeneration. These effects were reversed by rapamycin treatment. Tat colocalized with autophagosome and lysosomal markers and enhanced the colocalization of autophagosome with lysosome markers. Furthermore, co-IP studies showed that Tat interacts with lysosomal-associated membrane protein 2A (LAMP2A) in vitro and in vivo, and LAMP2A overexpression reduces Tat-induced neurotoxicity. Hence, Tat protein may induce autophagosome and lysosome fusion through interaction with LAMP2A leading to abnormal neuronal autophagy function and dysregulated degradation of critical intracellular components. Therapies targeting Tat-mediated autophagy alterations may decrease neurodegeneration in aging patients with HAND.


Assuntos
Autofagia , Lisossomos/metabolismo , Neurônios/metabolismo , Fagossomos/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Complexo AIDS Demência/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , HIV-1/genética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Camundongos , Ligação Proteica , Ratos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética , Produtos do Gene tat do Vírus da Imunodeficiência Humana/toxicidade
18.
Neurobiol Dis ; 86: 154-69, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26611103

RESUMO

HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.


Assuntos
Encéfalo/metabolismo , Transtornos Cognitivos/metabolismo , Transtornos Cognitivos/virologia , Infecções por HIV/complicações , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Neurônios/metabolismo , Adulto , Animais , Encéfalo/ultraestrutura , Encéfalo/virologia , Dinaminas , Encefalite/metabolismo , Encefalite/virologia , Feminino , Lobo Frontal/metabolismo , Lobo Frontal/ultraestrutura , Lobo Frontal/virologia , GTP Fosfo-Hidrolases/metabolismo , Proteína gp120 do Envelope de HIV/metabolismo , Humanos , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Mitocôndrias/ultraestrutura , Mitocôndrias/virologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/ultraestrutura , Neurônios/virologia , Ratos , Ratos Sprague-Dawley , Células Tumorais Cultivadas
19.
J Neurosci ; 34(28): 9441-54, 2014 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25009275

RESUMO

Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are common neurodegenerative disorders of the aging population, characterized by progressive and abnormal accumulation of α-synuclein (α-syn). Recent studies have shown that C-terminus (CT) truncation and propagation of α-syn play a role in the pathogenesis of PD/DLB. Therefore, we explored the effect of passive immunization against the CT of α-syn in the mThy1-α-syn transgenic (tg) mouse model, which resembles the striato-nigral and motor deficits of PD. Mice were immunized with the new monoclonal antibodies 1H7, 5C1, or 5D12, all directed against the CT of α-syn. CT α-syn antibodies attenuated synaptic and axonal pathology, reduced the accumulation of CT-truncated α-syn (CT-α-syn) in axons, rescued the loss of tyrosine hydroxylase fibers in striatum, and improved motor and memory deficits. Among them, 1H7 and 5C1 were most effective at decreasing levels of CT-α-syn and higher-molecular-weight aggregates. Furthermore, in vitro studies showed that preincubation of recombinant α-syn with 1H7 and 5C1 prevented CT cleavage of α-syn. In a cell-based system, CT antibodies reduced cell-to-cell propagation of full-length α-syn, but not of the CT-α-syn that lacked the 118-126 aa recognition site needed for antibody binding. Furthermore, the results obtained after lentiviral expression of α-syn suggest that antibodies might be blocking the extracellular truncation of α-syn by calpain-1. Together, these results demonstrate that antibodies against the CT of α-syn reduce levels of CT-truncated fragments of the protein and its propagation, thus ameliorating PD-like pathology and improving behavioral and motor functions in a mouse model of this disease.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Encéfalo/imunologia , Transtornos dos Movimentos/imunologia , Transtornos dos Movimentos/terapia , Transtornos Parkinsonianos/imunologia , Transtornos Parkinsonianos/terapia , alfa-Sinucleína/imunologia , Animais , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Imunoterapia/métodos , Camundongos , Camundongos Transgênicos , Distribuição Tecidual , Resultado do Tratamento
20.
J Biol Chem ; 289(25): 17917-31, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24825898

RESUMO

Alzheimer disease (AD) is characterized by widespread neurodegeneration throughout the association cortex and limbic system, deposition of amyloid-ß peptide (Aß) in the neuropil and around the blood vessels, and formation of neurofibrillary tangles. The endopeptidase neprilysin has been successfully used to reduce the accumulation of Aß following intracranial viral vector delivery or ex vivo manipulated intracranial delivery. These therapies have relied on direct injections into the brain, whereas a clinically desirable therapy would involve i.v. infusion of a recombinant enzyme. We previously characterized a recombinant neprilysin that contained a 38-amino acid brain-targeting domain. Recombinant cell lines have been generated expressing this brain-targeted enzyme (ASN12). In this report, we characterize the ASN12 recombinant protein for pharmacology in a mouse as well as efficacy in two APPtg mouse models of AD. The recombinant ASN12 transited to the brain with a t½ of 24 h and accumulated to 1.7% of injected dose at 24 h following i.v. delivery. We examined pharmacodynamics in the tg2576 APPtg mouse with the prion promoter APP695 SWE mutation and in the Line41 mThy1 APP751 mutation mouse. Treatment of either APPtg mouse resulted in reduced Aß, increased neuronal synapses, and improved learning and memory. In addition, the Line41 APPtg mice showed increased levels of C-terminal neuropeptide Y fragments and increased neurogenesis. These results suggest that the recombinant brain-targeted neprilysin, ASN12, may be an effective treatment for AD and warrant further investigation in clinical trials.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Neprilisina/farmacologia , Neurogênese/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Células Hep G2 , Humanos , Camundongos , Camundongos Transgênicos , Mutação , Neprilisina/genética , Neuropeptídeo Y/genética , Ratos , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa