Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 294(17): 6796-6808, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30837269

RESUMO

Type IV pili (Tfp) are functionally versatile filaments, widespread in prokaryotes, that belong to a large class of filamentous nanomachines known as type IV filaments (Tff). Although Tfp have been extensively studied in several Gram-negative pathogens where they function as key virulence factors, many aspects of their biology remain poorly understood. Here, we performed a global biochemical and structural analysis of Tfp in a recently emerged Gram-positive model, Streptococcus sanguinis In particular, we focused on the five pilins and pilin-like proteins involved in Tfp biology in S. sanguinis We found that the two major pilins, PilE1 and PilE2, (i) follow widely conserved principles for processing by the prepilin peptidase PilD and for assembly into filaments; (ii) display only one of the post-translational modifications frequently found in pilins, i.e. a methylated N terminus; (iii) are found in the same heteropolymeric filaments; and (iv) are not functionally equivalent. The 3D structure of PilE1, solved by NMR, revealed a classical pilin-fold with a highly unusual flexible C terminus. Intriguingly, PilE1 more closely resembles pseudopilins forming shorter Tff than bona fide Tfp-forming major pilins, underlining the evolutionary relatedness among different Tff. Finally, we show that S. sanguinis Tfp contain a low abundance of three additional proteins processed by PilD, the minor pilins PilA, PilB, and PilC. These findings provide the first global biochemical and structural picture of a Gram-positive Tfp and have fundamental implications for our understanding of a widespread class of filamentous nanomachines.


Assuntos
Fímbrias Bacterianas/metabolismo , Streptococcus/metabolismo , Biopolímeros/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Metilação , Conformação Proteica
2.
PLoS Pathog ; 12(12): e1006109, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27992883

RESUMO

Type IV pilus (T4P) systems are complex molecular machines that polymerize major pilin proteins into thin filaments displayed on bacterial surfaces. Pilus functions require rapid extension and depolymerization of the pilus, powered by the assembly and retraction ATPases, respectively. A set of low abundance minor pilins influences pilus dynamics by unknown mechanisms. The Vibrio cholerae toxin-coregulated pilus (TCP) is among the simplest of the T4P systems, having a single minor pilin TcpB and lacking a retraction ATPase. Here we show that TcpB, like its homolog CofB, initiates pilus assembly. TcpB co-localizes with the pili but at extremely low levels, equivalent to one subunit per pilus. We used a micropillars assay to demonstrate that TCP are retractile despite the absence of a retraction ATPase, and that retraction relies on TcpB, as a V. cholerae tcpB Glu5Val mutant is fully piliated but does not induce micropillars movements. This mutant is impaired in TCP-mediated autoagglutination and TcpF secretion, consistent with retraction being required for these functions. We propose that TcpB initiates pilus retraction by incorporating into the growing pilus in a Glu5-dependent manner, which stalls assembly and triggers processive disassembly. These results provide a framework for understanding filament dynamics in more complex T4P systems and the closely related Type II secretion system.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Vibrio cholerae/metabolismo , Fímbrias Bacterianas/ultraestrutura , Immunoblotting , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Vibrio cholerae/ultraestrutura
3.
Mol Microbiol ; 99(2): 380-92, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26435398

RESUMO

Type IV pili (Tfp), which have been studied extensively in a few Gram-negative species, are the paradigm of a group of widespread and functionally versatile nano-machines. Here, we performed the most detailed molecular characterisation of Tfp in a Gram-positive bacterium. We demonstrate that the naturally competent Streptococcus sanguinis produces retractable Tfp, which like their Gram-negative counterparts can generate hundreds of piconewton of tensile force and promote intense surface-associated motility. Tfp power 'train-like' directional motion parallel to the long axis of chains of cells, leading to spreading zones around bacteria grown on plates. However, S. sanguinis Tfp are not involved in DNA uptake, which is mediated by a related but distinct nano-machine, and are unusual because they are composed of two pilins in comparable amounts, rather than one as normally seen. Whole genome sequencing identified a locus encoding all the genes involved in Tfp biology in S. sanguinis. A systematic mutational analysis revealed that Tfp biogenesis in S. sanguinis relies on a more basic machinery (only 10 components) than in Gram-negative species and that a small subset of four proteins dispensable for pilus biogenesis are essential for motility. Intriguingly, one of the piliated mutants that does not exhibit spreading retains microscopic motility but moves sideways, which suggests that the corresponding protein controls motion directionality. Besides establishing S. sanguinis as a useful new model for studying Tfp biology, these findings have important implications for our understanding of these widespread filamentous nano-machines.


Assuntos
Proteínas de Bactérias/metabolismo , Fímbrias Bacterianas/metabolismo , Streptococcus/citologia , Streptococcus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/genética , Streptococcus/genética
4.
Methods Cell Biol ; 125: 453-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25640444

RESUMO

Bacteria have long been ideal model systems for studying many biological phenomena. But when it comes to motility, we are quite often just figuring out the mechanisms underlying their ability to move in liquid or on surfaces. In the last few decades, research has emphasized the importance for bacteria to be able to adhere to and move on surfaces in order to form complex bacterial communities called biofilms. To better understand the multiple chemical and biophysical mechanisms responsible for the initial interactions of bacteria on surfaces that develop into biofilms, we present here low-cost and easy-to-implement protocols to quantitatively analyze the movement of single bacteria on surfaces by microscopy. These protocols are presented in the case of the human pathogen Neisseria gonorrhoeae that moves on surfaces solely powered by Type IV pili, motility referred to as twitching motility. These methods, however, are applicable for any motile bacteria interacting with surfaces. The precise quantification of motility coupled with genetic tools will enable us to precisely dissect the mechanisms and dynamics of bacterial surface motility which are still poorly understood.


Assuntos
Neisseria gonorrhoeae/citologia , Humanos , Imageamento Tridimensional , Movimento , Propriedades de Superfície
5.
PLoS One ; 3(11): e3735, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19011687

RESUMO

Actin-based cell motility and force generation are central to immune response, tissue development, and cancer metastasis, and understanding actin cytoskeleton regulation is a major goal of cell biologists. Cell spreading is a commonly used model system for motility experiments -- spreading fibroblasts exhibit stereotypic, spatially-isotropic edge dynamics during a reproducible sequence of functional phases: 1) During early spreading, cells form initial contacts with the surface. 2) The middle spreading phase exhibits rapidly increasing attachment area. 3) Late spreading is characterized by periodic contractions and stable adhesions formation. While differences in cytoskeletal regulation between phases are known, a global analysis of the spatial and temporal coordination of motility and force generation is missing. Implementing improved algorithms for analyzing edge dynamics over the entire cell periphery, we observed that a single domain of homogeneous cytoskeletal dynamics dominated each of the three phases of spreading. These domains exhibited a unique combination of biophysical and biochemical parameters -- a motility module. Biophysical characterization of the motility modules revealed that the early phase was dominated by periodic, rapid membrane blebbing; the middle phase exhibited continuous protrusion with very low traction force generation; and the late phase was characterized by global periodic contractions and high force generation. Biochemically, each motility module exhibited a different distribution of the actin-related protein VASP, while inhibition of actin polymerization revealed different dependencies on barbed-end polymerization. In addition, our whole-cell analysis revealed that many cells exhibited heterogeneous combinations of motility modules in neighboring regions of the cell edge. Together, these observations support a model of motility in which regions of the cell edge exhibit one of a limited number of motility modules that, together, determine the overall motility function. Our data and algorithms are publicly available to encourage further exploration.


Assuntos
Membrana Celular/metabolismo , Movimento Celular , Fibroblastos/citologia , Animais , Apoptose/efeitos dos fármacos , Fenômenos Biomecânicos , Moléculas de Adesão Celular/metabolismo , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Citocalasina D/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Camundongos , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa