Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(48): 14936-41, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627243

RESUMO

Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.


Assuntos
Adaptação Fisiológica/genética , Doença de Chagas , Interações Hospedeiro-Parasita/genética , Insetos Vetores , Rhodnius , Trypanosoma cruzi/fisiologia , Animais , Sequência de Bases , Transferência Genética Horizontal , Humanos , Insetos Vetores/genética , Insetos Vetores/parasitologia , Dados de Sequência Molecular , Rhodnius/genética , Rhodnius/parasitologia , Wolbachia/genética
2.
Nucleic Acids Res ; 42(Database issue): D789-93, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24194605

RESUMO

WormBase (http://www.wormbase.org/) is a highly curated resource dedicated to supporting research using the model organism Caenorhabditis elegans. With an electronic history predating the World Wide Web, WormBase contains information ranging from the sequence and phenotype of individual alleles to genome-wide studies generated using next-generation sequencing technologies. In recent years, we have expanded the contents to include data on additional nematodes of agricultural and medical significance, bringing the knowledge of C. elegans to bear on these systems and providing support for underserved research communities. Manual curation of the primary literature remains a central focus of the WormBase project, providing users with reliable, up-to-date and highly cross-linked information. In this update, we describe efforts to organize the original atomized and highly contextualized curated data into integrated syntheses of discrete biological topics. Next, we discuss our experiences coping with the vast increase in available genome sequences made possible through next-generation sequencing platforms. Finally, we describe some of the features and tools of the new WormBase Web site that help users better find and explore data of interest.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma Helmíntico , Animais , Internet , Anotação de Sequência Molecular , Nematoides/genética
3.
Nucleic Acids Res ; 40(Database issue): D735-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22067452

RESUMO

Since its release in 2000, WormBase (http://www.wormbase.org) has grown from a small resource focusing on a single species and serving a dedicated research community, to one now spanning 15 species essential to the broader biomedical and agricultural research fields. To enhance the rate of curation, we have automated the identification of key data in the scientific literature and use similar methodology for data extraction. To ease access to the data, we are collaborating with journals to link entities in research publications to their report pages at WormBase. To facilitate discovery, we have added new views of the data, integrated large-scale datasets and expanded descriptions of models for human disease. Finally, we have introduced a dramatic overhaul of the WormBase website for public beta testing. Designed to balance complexity and usability, the new site is species-agnostic, highly customizable, and interactive. Casual users and developers alike will be able to leverage the public RESTful application programming interface (API) to generate custom data mining solutions and extensions to the site. We report on the growth of our database and on our work in keeping pace with the growing demand for data, efforts to anticipate the requirements of users and new collaborations with the larger science community.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma Helmíntico , Nematoides/genética , Animais , Caenorhabditis/genética , Caenorhabditis elegans/anatomia & histologia , Gráficos por Computador , Perfilação da Expressão Gênica , Genômica , Internet , Anotação de Sequência Molecular , Fenótipo
4.
Nat Genet ; 36(12): 1268-74, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15531882

RESUMO

Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their approximately 4,400 protein coding sequences: 173 in Paratyphi A and approximately 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).


Assuntos
Evolução Molecular , Variação Genética , Genoma Bacteriano , Mutação/genética , Salmonella paratyphi A/genética , Salmonella typhi/genética , Sequência de Bases , Biblioteca Gênica , Componentes Genômicos/genética , Humanos , Análise em Microsséries , Dados de Sequência Molecular , Pseudogenes/genética , Análise de Sequência de DNA , Especificidade da Espécie
5.
Nucleic Acids Res ; 38(Database issue): D463-7, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19910365

RESUMO

WormBase (http://www.wormbase.org) is a central data repository for nematode biology. Initially created as a service to the Caenorhabditis elegans research field, WormBase has evolved into a powerful research tool in its own right. In the past 2 years, we expanded WormBase to include the complete genomic sequence, gene predictions and orthology assignments from a range of related nematodes. This comparative data enrich the C. elegans data with improved gene predictions and a better understanding of gene function. In turn, they bring the wealth of experimental knowledge of C. elegans to other systems of medical and agricultural importance. Here, we describe new species and data types now available at WormBase. In addition, we detail enhancements to our curatorial pipeline and website infrastructure to accommodate new genomes and an extensive user base.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Bases de Dados de Ácidos Nucleicos , Alelos , Animais , Biologia Computacional/tendências , Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Internet , Fenótipo , Estrutura Terciária de Proteína , Software , Fatores de Transcrição
6.
Nucleic Acids Res ; 36(Database issue): D612-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17991679

RESUMO

WormBase (www.wormbase.org) is the major publicly available database of information about Caenorhabditis elegans, an important system for basic biological and biomedical research. Derived from the initial ACeDB database of C. elegans genetic and sequence information, WormBase now includes the genomic, anatomical and functional information about C. elegans, other Caenorhabditis species and other nematodes. As such, it is a crucial resource not only for C. elegans biologists but the larger biomedical and bioinformatics communities. Coverage of core areas of C. elegans biology will allow the biomedical community to make full use of the results of intensive molecular genetic analysis and functional genomic studies of this organism. Improved search and display tools, wider cross-species comparisons and extended ontologies are some of the features that will help scientists extend their research and take advantage of other nematode species genome sequences.


Assuntos
Caenorhabditis elegans/genética , Bases de Dados Genéticas , Genoma Helmíntico , Animais , Caenorhabditis elegans/metabolismo , Mapeamento Cromossômico , Expressão Gênica , Redes Reguladoras de Genes , Genes de Helmintos , Genômica , Internet , Espectrometria de Massas , Peptídeos/química , Fenótipo , Interface Usuário-Computador
7.
BMC Genomics ; 10: 205, 2009 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-19405965

RESUMO

BACKGROUND: The entomopathogenic nematode Heterorhabditis bacteriophora and its symbiotic bacterium, Photorhabdus luminescens, are important biological control agents of insect pests. This nematode-bacterium-insect association represents an emerging tripartite model for research on mutualistic and parasitic symbioses. Elucidation of mechanisms underlying these biological processes may serve as a foundation for improving the biological control potential of the nematode-bacterium complex. This large-scale expressed sequence tag (EST) analysis effort enables gene discovery and development of microsatellite markers. These ESTs will also aid in the annotation of the upcoming complete genome sequence of H. bacteriophora. RESULTS: A total of 31,485 high quality ESTs were generated from cDNA libraries of the adult H. bacteriophora TTO1 strain. Cluster analysis revealed the presence of 3,051 contigs and 7,835 singletons, representing 10,886 distinct EST sequences. About 72% of the distinct EST sequences had significant matches (E value < 1e-5) to proteins in GenBank's non-redundant (nr) and Wormpep190 databases. We have identified 12 ESTs corresponding to 8 genes potentially involved in RNA interference, 22 ESTs corresponding to 14 genes potentially involved in dauer-related processes, and 51 ESTs corresponding to 27 genes potentially involved in defense and stress responses. Comparison to ESTs and proteins of free-living nematodes led to the identification of 554 parasitic nematode-specific ESTs in H. bacteriophora, among which are those encoding F-box-like/WD-repeat protein theromacin, Bax inhibitor-1-like protein, and PAZ domain containing protein. Gene Ontology terms were assigned to 6,685 of the 10,886 ESTs. A total of 168 microsatellite loci were identified with primers designable for 141 loci. CONCLUSION: A total of 10,886 distinct EST sequences were identified from adult H. bacteriophora cDNA libraries. BLAST searches revealed ESTs potentially involved in parasitism, RNA interference, defense responses, stress responses, and dauer-related processes. The putative microsatellite markers identified in H. bacteriophora ESTs will enable genetic mapping and population genetic studies. These genomic resources provide the material base necessary for genome annotation, microarray development, and in-depth gene functional analysis.


Assuntos
Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Rhabditoidea/genética , Animais , Análise por Conglomerados , DNA de Helmintos/genética , Biblioteca Gênica , Genoma Helmíntico , Repetições de Microssatélites , Análise de Sequência de DNA
8.
Nucleic Acids Res ; 35(Database issue): D506-10, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17099234

RESUMO

WormBase (http://wormbase.org), a model organism database for Caenorhabditis elegans and other related nematodes, continues to evolve and expand. Over the past year WormBase has added new data on C.elegans, including data on classical genetics, cell biology and functional genomics; expanded the annotation of closely related nematodes with a new genome browser for Caenorhabditis remanei; and deployed new hardware for stronger performance. Several existing datasets including phenotype descriptions and RNAi experiments have seen a large increase in new content. New datasets such as the C.remanei draft assembly and annotations, the Vancouver Fosmid library and TEC-RED 5' end sites are now available as well. Access to and searching WormBase has become more dependable and flexible via multiple mirror sites and indexing through Google.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis/genética , Bases de Dados Genéticas , Animais , Genes de Helmintos , Genoma Helmíntico , Genômica , Internet , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Interferência de RNA , Interface Usuário-Computador
9.
Nucleic Acids Res ; 34(Database issue): D475-8, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16381915

RESUMO

WormBase (http://wormbase.org), the public database for genomics and biology of Caenorhabditis elegans, has been restructured for stronger performance and expanded for richer biological content. Performance was improved by accelerating the loading of central data pages such as the omnibus Gene page, by rationalizing internal data structures and software for greater portability, and by making the Genome Browser highly customizable in how it views and exports genomic subsequences. Arbitrarily complex, user-specified queries are now possible through Textpresso (for all available literature) and through WormMart (for most genomic data). Biological content was enriched by reconciling all available cDNA and expressed sequence tag data with gene predictions, clarifying single nucleotide polymorphism and RNAi sites, and summarizing known functions for most genes studied in this organism.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Bases de Dados Genéticas , Software , Animais , Caenorhabditis elegans/fisiologia , DNA Complementar/química , Etiquetas de Sequências Expressas/química , Genoma Helmíntico , Genômica , Internet , Polimorfismo de Nucleotídeo Único , Interferência de RNA , Interface Usuário-Computador
10.
PLoS Biol ; 1(2): E45, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14624247

RESUMO

The soil nematodes Caenorhabditis briggsae and Caenorhabditis elegans diverged from a common ancestor roughly 100 million years ago and yet are almost indistinguishable by eye. They have the same chromosome number and genome sizes, and they occupy the same ecological niche. To explore the basis for this striking conservation of structure and function, we have sequenced the C. briggsae genome to a high-quality draft stage and compared it to the finished C. elegans sequence. We predict approximately 19,500 protein-coding genes in the C. briggsae genome, roughly the same as in C. elegans. Of these, 12,200 have clear C. elegans orthologs, a further 6,500 have one or more clearly detectable C. elegans homologs, and approximately 800 C. briggsae genes have no detectable matches in C. elegans. Almost all of the noncoding RNAs (ncRNAs) known are shared between the two species. The two genomes exhibit extensive colinearity, and the rate of divergence appears to be higher in the chromosomal arms than in the centers. Operons, a distinctive feature of C. elegans, are highly conserved in C. briggsae, with the arrangement of genes being preserved in 96% of cases. The difference in size between the C. briggsae (estimated at approximately 104 Mbp) and C. elegans (100.3 Mbp) genomes is almost entirely due to repetitive sequence, which accounts for 22.4% of the C. briggsae genome in contrast to 16.5% of the C. elegans genome. Few, if any, repeat families are shared, suggesting that most were acquired after the two species diverged or are undergoing rapid evolution. Coclustering the C. elegans and C. briggsae proteins reveals 2,169 protein families of two or more members. Most of these are shared between the two species, but some appear to be expanding or contracting, and there seem to be as many as several hundred novel C. briggsae gene families. The C. briggsae draft sequence will greatly improve the annotation of the C. elegans genome. Based on similarity to C. briggsae, we found strong evidence for 1,300 new C. elegans genes. In addition, comparisons of the two genomes will help to understand the evolutionary forces that mold nematode genomes.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis/genética , Genoma , Genômica/métodos , Animais , Evolução Biológica , Mapeamento Cromossômico , Cromossomos Artificiais Bacterianos , Análise por Conglomerados , Códon , Sequência Conservada , Evolução Molecular , Éxons , Biblioteca Gênica , Sequências Repetitivas Dispersas , Íntrons , MicroRNAs/genética , Modelos Genéticos , Modelos Estatísticos , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Mapeamento Físico do Cromossomo , Plasmídeos/metabolismo , Estrutura Terciária de Proteína , Proteínas/química , RNA/química , RNA Ribossômico/genética , RNA Líder para Processamento , RNA de Transferência/genética , Análise de Sequência de DNA , Especificidade da Espécie
11.
Nucleic Acids Res ; 33(Database issue): D383-9, 2005 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15608221

RESUMO

WormBase (http://www.wormbase.org), the model organism database for information about Caenorhabditis elegans and related nematodes, continues to expand in breadth and depth. Over the past year, WormBase has added multiple large-scale datasets including SAGE, interactome, 3D protein structure datasets and NCBI KOGs. To accommodate this growth, the International WormBase Consortium has improved the user interface by adding new features to aid in navigation, visualization of large-scale datasets, advanced searching and data mining. Internally, we have restructured the database models to rationalize the representation of genes and to prepare the system to accept the genome sequences of three additional Caenorhabditis species over the coming year.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Caenorhabditis/genética , Bases de Dados Genéticas , Genômica , Animais , Caenorhabditis/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Bases de Dados Genéticas/tendências , Perfilação da Expressão Gênica , Conformação Proteica , Software , Integração de Sistemas , Técnicas do Sistema de Duplo-Híbrido , Interface Usuário-Computador
12.
Nucleic Acids Res ; 31(1): 133-7, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12519966

RESUMO

WormBase (http://www.wormbase.org/) is a web-accessible central data repository for information about Caenorhabditis elegans and related nematodes. The past two years have seen a significant expansion in the biological scope of WormBase, including the integration of large-scale, genome-wide data sets, the inclusion of genome sequence and gene predictions from related species and active literature curation. This expansion of data has also driven the development and refinement of user interfaces and operability, including a new Genome Browser, new searches and facilities for data access and the inclusion of extensive documentation. These advances have expanded WormBase beyond the obvious target audience of C. elegans researchers, to include researchers wishing to explore problems in functional and comparative genomics within the context of a powerful genetic system.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis/genética , Bases de Dados de Ácidos Nucleicos , Genômica , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , DNA de Helmintos/análise , Coleta de Dados , Etiquetas de Sequências Expressas , Expressão Gênica , Armazenamento e Recuperação da Informação , Neurônios/classificação , Polimorfismo de Nucleotídeo Único , Controle de Qualidade , Interferência de RNA , RNA de Helmintos/antagonistas & inibidores , Homologia de Sequência do Ácido Nucleico
13.
Nucleic Acids Res ; 32(Database issue): D411-7, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14681445

RESUMO

WormBase (http://www.wormbase.org/) is the central data repository for information about Caenorhabditis elegans and related nematodes. As a model organism database, WormBase extends beyond the genomic sequence, integrating experimental results with extensively annotated views of the genome. The WormBase Consortium continues to expand the biological scope and utility of WormBase with the inclusion of large-scale genomic analyses, through active data and literature curation, through new analysis and visualization tools, and through refinement of the user interface. Over the past year, the nearly complete genomic sequence and comparative analyses of the closely related species Caenorhabditis briggsae have been integrated into WormBase, including gene predictions, ortholog assignments and a new synteny viewer to display the relationships between the two species. Extensive site-wide refinement of the user interface now provides quick access to the most frequently accessed resources and a consistent browsing experience across the site. Unified single-page views now provide complete summaries of commonly accessed entries like genes. These advances continue to increase the utility of WormBase for C.elegans researchers, as well as for those researchers exploring problems in functional and comparative genomics in the context of a powerful genetic system.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis/genética , Bases de Dados Genéticas , Genômica , Animais , Biologia Computacional , Armazenamento e Recuperação da Informação , Internet , Interface Usuário-Computador
14.
WormBook ; : 1-18, 2014 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-25368915

RESUMO

In the early stage of the C. elegans sequencing project, the ab initio gene prediction program Genefinder was used to find protein-coding genes. Subsequently, protein-coding genes structures have been actively curated by WormBase using evidence from all available data sources. Most coding loci were identified by the Genefinder program, but the process of gene curation results in a continual refinement of the details of gene structure, involving the correction and confirmation of intron splice sites, the addition of alternate splicing forms, the merging and splitting of incorrect predictions, and the creation and extension of 5' and 3' ends. The development of new technologies results in the availability of further data sources, and these are incorporated into the evidence used to support the curated structures. Non-coding genes are more difficult to curate using this methodology, and so the structures for most of these have been imported from the literature or from specialist databases of ncRNA data. This article describes the structure and curation of transcribed regions of genes.


Assuntos
Caenorhabditis elegans/genética , Genes de Helmintos , Animais , Transcrição Gênica
15.
PLoS One ; 8(7): e69618, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23874975

RESUMO

Heterorhabditis bacteriophora are entomopathogenic nematodes that have evolved a mutualism with Photorhabdus luminescens bacteria to function as highly virulent insect pathogens. The nematode provides a safe harbor for intestinal symbionts in soil and delivers the symbiotic bacteria into the insect blood. The symbiont provides virulence and toxins, metabolites essential for nematode reproduction, and antibiotic preservation of the insect cadaver. Approximately half of the 21,250 putative protein coding genes identified in the 77 Mbp high quality draft H. bacteriophora genome sequence were novel proteins of unknown function lacking homologs in Caenorhabditis elegans or any other sequenced organisms. Similarly, 317 of the 603 predicted secreted proteins are novel with unknown function in addition to 19 putative peptidases, 9 peptidase inhibitors and 7 C-type lectins that may function in interactions with insect hosts or bacterial symbionts. The 134 proteins contained mariner transposase domains, of which there are none in C. elegans, suggesting an invasion and expansion of mariner transposons in H. bacteriophora. Fewer Kyoto Encyclopedia of Genes and Genomes Orthologies in almost all metabolic categories were detected in the genome compared with 9 other sequenced nematode genomes, which may reflect dependence on the symbiont or insect host for these functions. The H. bacteriophora genome sequence will greatly facilitate genetics, genomics and evolutionary studies to gain fundamental knowledge of nematode parasitism and mutualism. It also elevates the utility of H. bacteriophora as a bridge species between vertebrate parasitic nematodes and the C. elegans model.


Assuntos
Genoma/genética , Photorhabdus , Proteínas/genética , Rhabditoidea/genética , Rhabditoidea/microbiologia , Simbiose/genética , Animais , DNA Complementar/genética , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas/genética , Repetições de Microssatélites/genética , Filogenia , Proteínas/metabolismo , Interferência de RNA , Especificidade da Espécie
16.
WormBook ; : 1-10, 2006 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18023127

RESUMO

Throughout the C. elegans sequencing project Genefinder was the primary protein-coding gene prediction program. These initial predictions were manually reviewed by curators as part of a "first-pass annotation" and are actively curated by WormBase staff using a variety of data and information. In the WormBase data release WS133 there are 22,227 protein-coding gene, including 2,575 alternatively-spliced forms. Twenty-eight percent of these have every base of every exon confirmed by transcription evidence while an additional 51% have some bases confirmed. Most of the genes are relatively small covering a genomic region of about 3 kb. The average gene contains 6.4 coding exons accounting for about 26% of the genome. Most exons are small and separated by small introns. The median size of exons is 123 bases, while the most common size for introns is 47 bases. Protein-coding genes are denser on the autosomes than on chromosome X, and denser in the central region of the autosomes than on the arms. There are only 561 annotated pseudogenes but estimates but several estimates put this much higher.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Genes de Helmintos , Animais , Genoma , Pseudogenes , RNA de Helmintos/genética
17.
Proc Natl Acad Sci U S A ; 103(15): 5977-82, 2006 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-16585510

RESUMO

Escherichia coli is a model laboratory bacterium, a species that is widely distributed in the environment, as well as a mutualist and pathogen in its human hosts. As such, E. coli represents an attractive organism to study how environment impacts microbial genome structure and function. Uropathogenic E. coli (UPEC) must adapt to life in several microbial communities in the human body, and has a complex life cycle in the bladder when it causes acute or recurrent urinary tract infection (UTI). Several studies designed to identify virulence factors have focused on genes that are uniquely represented in UPEC strains, whereas the role of genes that are common to all E. coli has received much less attention. Here we describe the complete 5,065,741-bp genome sequence of a UPEC strain recovered from a patient with an acute bladder infection and compare it with six other finished E. coli genome sequences. We searched 3,470 ortholog sets for genes that are under positive selection only in UPEC strains. Our maximum likelihood-based analysis yielded 29 genes involved in various aspects of cell surface structure, DNA metabolism, nutrient acquisition, and UTI. These results were validated by resequencing a subset of the 29 genes in a panel of 50 urinary, periurethral, and rectal E. coli isolates from patients with UTI. These studies outline a computational approach that may be broadly applicable for studying strain-specific adaptation and pathogenesis in other bacteria.


Assuntos
Infecções por Escherichia coli/genética , Escherichia coli/genética , Escherichia coli/patogenicidade , Infecções Urinárias/microbiologia , Cromossomos Bacterianos , Escherichia coli/classificação , Genoma Bacteriano , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Filogenia , Recombinação Genética , Seleção Genética
18.
Genome Res ; 15(8): 1034-50, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16024819

RESUMO

We have conducted a comprehensive search for conserved elements in vertebrate genomes, using genome-wide multiple alignments of five vertebrate species (human, mouse, rat, chicken, and Fugu rubripes). Parallel searches have been performed with multiple alignments of four insect species (three species of Drosophila and Anopheles gambiae), two species of Caenorhabditis, and seven species of Saccharomyces. Conserved elements were identified with a computer program called phastCons, which is based on a two-state phylogenetic hidden Markov model (phylo-HMM). PhastCons works by fitting a phylo-HMM to the data by maximum likelihood, subject to constraints designed to calibrate the model across species groups, and then predicting conserved elements based on this model. The predicted elements cover roughly 3%-8% of the human genome (depending on the details of the calibration procedure) and substantially higher fractions of the more compact Drosophila melanogaster (37%-53%), Caenorhabditis elegans (18%-37%), and Saccharaomyces cerevisiae (47%-68%) genomes. From yeasts to vertebrates, in order of increasing genome size and general biological complexity, increasing fractions of conserved bases are found to lie outside of the exons of known protein-coding genes. In all groups, the most highly conserved elements (HCEs), by log-odds score, are hundreds or thousands of bases long. These elements share certain properties with ultraconserved elements, but they tend to be longer and less perfectly conserved, and they overlap genes of somewhat different functional categories. In vertebrates, HCEs are associated with the 3' UTRs of regulatory genes, stable gene deserts, and megabase-sized regions rich in moderately conserved noncoding sequences. Noncoding HCEs also show strong statistical evidence of an enrichment for RNA secondary structure.


Assuntos
Sequência Conservada , Evolução Molecular , Insetos/genética , Vertebrados/genética , Leveduras/genética , Regiões 3' não Traduzidas , Animais , Pareamento de Bases/genética , Sequência de Bases , Caenorhabditis elegans/genética , DNA Intergênico , Genoma , Humanos , Dados de Sequência Molecular , Saccharomyces/genética
19.
Wilehm Roux Arch Dev Biol ; 190(2): 111-117, 1981 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28305360

RESUMO

The pattern of appearance of ribosomes, newly synthesized mRNA, and poly(A)-containing mRNA in polyribosomes has been examined in sand dollar embryos. From early blastula until shortly before hatching small polyribosomes engaged in histone synthesis predominate. At the time of hatching, when the rate of cell increase is maximal, the proportion of poly(A)-containing RNA in polyribosomes is low. After hatching a new class of large polyribosomes appears and the amount of poly(A)-containing polyribosomal RNA increases. Cordycepin, an inhibitor of RNA adenylylation, prevents the appearance of the large polyribosomes after hatching as well as the increase in poly(A)-containing polyribosomal RNA.

20.
Genome Res ; 14(12): 2503-9, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15574829

RESUMO

The sequence of any genome becomes most useful for biological experimentation when a complete and accurate gene set is available. Gene prediction programs offer an efficient way to generate an automated gene set. Manual annotation, when performed by experienced annotators, is more accurate and complete than automated annotation. However, it is a laborious and expensive process, and by its nature, introduces a degree of variability not found with automated annotation. EAnnot (Electronic Annotation) is a program originally developed for manually annotating the human genome. It combines the latest bioinformatics tools to extract and analyze a wide range of publicly available data in order to achieve fast and reliable automatic gene prediction and annotation. EAnnot builds gene models based on mRNA, EST, and protein alignments to genomic sequence, attaches supporting evidence to the corresponding genes, identifies pseudogenes, and locates poly(A) sites and signals. Here, we compare manual annotation of human chromosome 6 with annotation performed by EAnnot in order to assess the latter's accuracy. EAnnot can readily be applied to manual annotation of other eukaryotic genomes and can be used to rapidly obtain an automated gene set.


Assuntos
Algoritmos , Cromossomos Humanos Par 6/genética , Biologia Computacional/métodos , Genoma , Genômica/métodos , Sequência de Bases , Humanos , Modelos Genéticos , Sensibilidade e Especificidade , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa