Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 607(7918): 307-312, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35732740

RESUMO

The diversity of life on Earth is controlled by hierarchical processes that interact over wide ranges of timescales1. Here, we consider the megaclimate regime2 at scales ≥1 million years (Myr). We focus on determining the domains of 'wandering' stochastic Earth system processes ('Court Jester'3) and stabilizing biotic interactions that induce diversity dependence of fluctuations in macroevolutionary rates ('Red Queen'4). Using state-of-the-art multiscale Haar and cross-Haar fluctuation analyses, we analysed the global genus-level Phanerozoic marine animal Paleobiology Database record of extinction rates (E), origination rates (O) and diversity (D) as well as sea water palaeotemperatures (T). Over the entire observed range from several million years to several hundred million years, we found that the fluctuations of T, E and O showed time-scaling behaviour. The megaclimate was characterized by positive scaling exponents-it is therefore apparently unstable. E and O are also scaling but with negative exponents-stable behaviour that is biotically mediated. For D, there were two regimes with a crossover at critical timescale [Formula: see text] ≈ 40 Myr. For shorter timescales, D exhibited nearly the same positive scaling as the megaclimate palaeotemperatures, whereas for longer timescales it tracks the scaling of macroevolutionary rates. At scales of at least [Formula: see text] there is onset of diversity dependence of E and O, probably enabled by mixing and synchronization (globalization) of the biota by geodispersal ('Geo-Red Queen').


Assuntos
Evolução Biológica , Biota , Clima , Animais , Organismos Aquáticos , Planeta Terra , Extinção Biológica , Água do Mar , Temperatura , Fatores de Tempo
2.
Trends Ecol Evol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38821781

RESUMO

For five decades, paleontologists, paleobiologists, and ecologists have investigated patterns of punctuated equilibria in biology. Here, we step outside those fields and summarize recent advances in the theory of and evidence for punctuated equilibria, gathered from contemporary observations in geology, molecular biology, genetics, anthropology, and sociotechnology. Taken in the aggregate, these observations lead to a more general theory that we refer to as punctuated evolution. The quality of recent datasets is beginning to illustrate the mechanics of punctuated evolution in a way that can be modeled across a vast range of phenomena, from mass extinctions hundreds of millions of years ago to the possible future ahead in the Anthropocene. We expect the study of punctuated evolution to be applicable beyond biological scenarios.

3.
Sci Rep ; 9(1): 14711, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31605001

RESUMO

The Earth's biota originated and developed to its current complex state through interacting with multilevel physical forcing of our planet's climate and near and outer space phenomena. In the present study, we focus on the time scale of hundreds to thousands of years in the most recent time interval - the Holocene. Using a pollen paleocommunity dataset from southern Lithuania (Cepkeliai bog) and applying spectral analysis techniques, we tested this record for the presence of statistically significant cyclicities, which can be observed in past solar activity. The time series of non-metric multidimensional scaling (NMDS) scores, which in our case are assumed to reflect temperature variations, and Tsallis entropy-related community compositional diversity estimates q* revealed the presence of cycles on several time scales. The most consistent periodicities are characterized by periods lasting between 201 and 240 years, which is very close to the DeVries solar cycles (208 years). A shorter-term periodicity of 176 years was detected in the NMDS scores that can be putatively linked to the subharmonics of the Gleissberg solar cycle. In addition, periodicities of ≈3,760 and ≈1,880 years were found in both parameters. These periodic patterns could be explained either as originating as a harmonic nonlinear response to precession forcing, or as resulting from the long-term solar activity quasicycles that were reported in previous studies of solar activity proxies.

4.
PLoS One ; 10(4): e0124146, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859854

RESUMO

The Ireviken event was one of the most intense extinction episodes that occurred during the mid-Paleozoic era. It had a strong global effect on a range of clades, with conodonts, graptolites and chitinozoans affected most. Using geophysical proxies and conodont species parameters of their temporal abundance structure we investigate how they affected the selectivity of conodont species survival during this calamity. After performing bivariate logistic analyses on 34 species of conodonts, we find three variables that were statistically significantly associated with their odds of survival. These namely include spectral exponents that describe degrees of autocorrelation in a time series, the skewness of species abundance distribution, and average environmental preferences, which are mostly determined by ancient water depths at sampling sites. Model selection of multivariate logistic models found the best model includes species local abundance skewness and substrate preference. A similar pattern is revealed through the regression tree analysis. The apparent extinction selectivity points to a possible causes of environmental deterioration during the Ireviken event. The significant positive relationship between extinction risk and preferential existence in deeper environments suggests the open ocean causal mechanisms of biotic stress that occurred during the Ireviken event. Marine regressions, which were previously suggested as a causal factor in this extinction episode, on theoretical grounds should have had higher impact on species living in near-shore environments, through the processes of habitat loss which are associated with decreases of shelfal areas. In addition, the significant positive correlations found between skewness of abundance distributions and spectral exponent values and the probability of species survival suggest that community and ecosystem processes (which controlled species abundance fluctuation patterns) were significantly related to selectivity processes of this smaller mass extinction event.


Assuntos
Cordados , Extinção Biológica , Animais , Evolução Biológica , Ecossistema , História Antiga , Lituânia , Modelos Logísticos , Modelos Biológicos , Dinâmica Populacional/história , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa