Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infection ; 51(6): 1731-1738, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37338782

RESUMO

PURPOSE: Antimicrobial resistance is a pressing issue in Ukraine, with healthcare-associated infections caused by multidrug-resistant organisms being a major concern. A recent prospective multicenter study revealed a staggering rate of 48.4% antimicrobial resistance to carbapenems among Enterobacterales causing a healthcare-associated infection. We conducted a systematic survey to investigate the incidence rate and incidence density of carbapenemase-producing Gram-negative bacteria (CPGN) among refugees and war-wounded Ukrainians in connection with the German health system. METHODS: From the onset of the war until November 2022, seven Ukrainian patients were admitted to our hospital. Upon admission, screening samples and samples from the focus of suspected infection were taken from all seven patients. The incidence rate and the incidence density of CPGN were calculated as a result of the microbiological findings. We sequenced all CPGN using Illumina technology. RESULTS: The incidence rate of CPGN at our hospital was 0.06 for 2021 and 0.18 for 2022. All seven Ukrainian patients were infected or colonized with at least one CPGN, including K. pneumoniae (14/25), P. aeruginosa (6/25), A. baumannii (1/25), Providencia stutartii (1/25), C. freundii (1/25), and E. coli (2/25). Genomic surveillance revealed that (i) most frequently detected carbapenemases among all sequenced isolates were blaNDM (17/25) and blaOXA-48 (6/25), (ii) most commonly observed plasmid replicons among the K. pneumoniae isolates recovered from Ukrainian patients were Col(pHAD28) (12/14), IncHI1B(pNDM-MAR) (9/14), IncFIB(pNDM-Mar) (12/14), and (iii) clonal relation between the pathogens of the Ukrainian isolates, but not for the isolates from our hospital surveillance system. CONCLUSION: The rising prevalence of community-acquired colonization and infection with CPGN is having a direct effect on the infection prevention measures, such as higher number of isolations, reprocessing of patient rooms, additional microbiological testing and overall organization within hospitals.


Assuntos
Antibacterianos , Infecção Hospitalar , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/genética , Proteínas de Bactérias/genética , Klebsiella pneumoniae , Infecção Hospitalar/microbiologia , Genômica
2.
Database (Oxford) ; 20232023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847816

RESUMO

With the rapidly growing amount of biological data, powerful but also flexible data management and visualization systems are of increasingly crucial importance. The COVID-19 pandemic has more than highlighted this need and the challenges scientists are facing. Here, we provide an example and a step-by-step template for non-IT personnel to easily implement an intuitive, interactive data management solution to manage and visualize the high influx of biological samples and associated metadata in a laboratory setting. Our approach is illustrated with the genomic surveillance for SARS-CoV-2 in Germany, covering over 11 600 internal and 130 000 external samples from multiple datasets. We compare three data management options used in laboratories: (i) simple, yet error-prone and inefficient spreadsheets, (ii) complex and long-to-implement laboratory information management systems and (iii) high-performance database management systems. We highlight the advantages and pitfalls of each option and outline why a document-oriented NoSQL option via MongoDB Atlas can be a suitable solution for many labs. Our example can be treated as a template and easily adapted to allow scientists to focus on their core work and not on complex data administration.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiologia , Pandemias , Genômica , Sistemas de Gerenciamento de Base de Dados
4.
Front Genet ; 12: 711437, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394197

RESUMO

In response to the SARS-CoV-2 pandemic, a highly increased sequencing effort has been established worldwide to track and trace ongoing viral evolution. Technologies, such as nanopore sequencing via the ARTIC protocol are used to reliably generate genomes from raw sequencing data as a crucial base for molecular surveillance. However, for many labs that perform SARS-CoV-2 sequencing, bioinformatics is still a major bottleneck, especially if hundreds of samples need to be processed in a recurring fashion. Pipelines developed for short-read data cannot be applied to nanopore data. Therefore, specific long-read tools and parameter settings need to be orchestrated to enable accurate genotyping and robust reference-based genome reconstruction of SARS-CoV-2 genomes from nanopore data. Here we present poreCov, a highly parallel workflow written in Nextflow, using containers to wrap all the tools necessary for a routine SARS-CoV-2 sequencing lab into one program. The ease of installation, combined with concise summary reports that clearly highlight all relevant information, enables rapid and reliable analysis of hundreds of SARS-CoV-2 raw sequence data sets or genomes. poreCov is freely available on GitHub under the GNUv3 license: github.com/replikation/poreCov.

5.
Front Microbiol ; 12: 631248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512560

RESUMO

Colony forming unit (CFU) determination by agar plating is still regarded as the gold standard for biofilm quantification despite being time- and resource-consuming. Here, we propose an adaption of the high-throughput Start-Growth-Time (SGT) method from planktonic to biofilm analysis, which indirectly quantifies CFU/mL numbers by evaluating regrowth curves of detached biofilms. For validation, the effect of dalbavancin, rifampicin and gentamicin against mature biofilms of Staphylococcus aureus and Enterococcus faecium was measured by accessing different features of the viability status of the cell, i.e., the cultivability (conventional agar plating), growth behavior (SGT) and metabolic activity (resazurin assay). SGT correlated well with the resazurin assay for all tested antibiotics, but only for gentamicin and rifampicin with conventional agar plating. Dalbavancin treatment-derived growth curves showed a compared to untreated controls significantly slower increase with reduced cell doubling times and reduced metabolic rate, but no change in CFU numbers was observed by conventional agar plating. Here, unspecific binding of dalbavancin to the biofilm interfered with the SGT methodology since the renewed release of dalbavancin during detachment of the biofilms led to an unintended antimicrobial effect. The application of the SGT method for anti-biofilm testing is therefore not suited for antibiotics which stick to the biofilm and/or to the bacterial cell wall. Importantly, the same applies for the well-established resazurin method for anti-biofilm testing. However, for antibiotics which do not bind to the biofilm as seen for gentamicin and rifampicin, the SGT method presents a much less labor-intensive method suited for high-throughput screening of anti-biofilm compounds.

6.
Vaccines (Basel) ; 9(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960196

RESUMO

Rapid vaccination may be of benefit in long-term care facilities (LTCF) that are affected by an ongoing COVID-19 outbreak. However, there are concerns regarding the safety and effectiveness of such an approach, particularly regarding the vaccination of pre-symptomatic patients. Here, we report the effectiveness of vaccination in a German LTCF hit by an outbreak that was detected 5 days after the first vaccine doses were administered. In detail, 66.7% of the unvaccinated patients experienced an unfavorable course; this proportion was much lower (33.3%) among the vaccinated patients. Even though this study is limited by a small number of patients, the observation and the comparison with related published data shows that vaccination (i) is safe and (ii) may still be of benefit when given shortly before an infection or even in pre-symptomatic LTCF-patients.

7.
Front Microbiol ; 12: 794441, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35069493

RESUMO

Human milk oligosaccharides (HMOs) have been shown to exhibit plenty of benefits for infants, such as prebiotic activity shaping the gut microbiota and immunomodulatory and anti-inflammatory activity. For some pathogenic bacteria, antimicrobial activity has been proved, but most studies focus on group B streptococci. In the present study, we investigated the antimicrobial and antibiofilm activities of the total and fractionated HMOs from pooled human milk against four common human pathogenic Gram-negative species (Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Burkholderia cenocepacia) and three Gram-positive species (Staphylococcus aureus, Enterococcus faecium, and Enterococcus faecalis). The activity of HMOs against enterococci and B. cenocepacia are addressed here for the first time. We showed that HMOs exhibit a predominant activity against the Gram-positive species, with E. faecalis being the most sensitive to the HMOs, both in planktonic bacteria and in biofilms. In further tests, we could exclude fucosyllactose as the antibacterial component. The biological significance of these findings may lie in the prevention of skin infections of the mother's breast as a consequence of breastfeeding-induced skin laceration and/or protection of the infants' nasopharynx and lung from respiratory pathogens such as staphylococci.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa