Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 20(3): e1012031, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427950

RESUMO

The opportunistic fungal pathogen Candida albicans thrives on human mucosal surfaces as a harmless commensal, but frequently causes infections under certain predisposing conditions. Translocation across the intestinal barrier into the bloodstream by intestine-colonizing C. albicans cells serves as the main source of disseminated candidiasis. However, the host and microbial mechanisms behind this process remain unclear. In this study we identified fungal and host factors specifically involved in infection of intestinal epithelial cells (IECs) using dual-RNA sequencing. Our data suggest that host-cell damage mediated by the peptide toxin candidalysin-encoding gene ECE1 facilitates fungal zinc acquisition. This in turn is crucial for the full virulence potential of C. albicans during infection. IECs in turn exhibit a filamentation- and damage-specific response to C. albicans infection, including NFκB, MAPK, and TNF signaling. NFκB activation by IECs limits candidalysin-mediated host-cell damage and mediates maintenance of the intestinal barrier and cell-cell junctions to further restrict fungal translocation. This is the first study to show that candidalysin-mediated damage is necessary for C. albicans nutrient acquisition during infection and to explain how IECs counteract damage and limit fungal translocation via NFκB-mediated maintenance of the intestinal barrier.


Assuntos
Candida albicans , Candidíase , Humanos , Zinco , Células Epiteliais , Intestinos
2.
Cell Microbiol ; 23(11): e13389, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34460149

RESUMO

Predatory interactions among microbes are major evolutionary driving forces for biodiversity. The fungivorous amoeba Protostelium aurantium has a wide fungal food spectrum including foremost pathogenic members of the genus Candida. Here we show that upon phagocytic ingestion by the amoeba, Candida parapsilosis is confronted with an oxidative burst and undergoes lysis within minutes of processing in acidified phagolysosomes. On the fungal side, a functional genomic approach identified copper and redox homeostasis as primary targets of amoeba predation, with the highly expressed copper exporter gene CRP1 and the peroxiredoxin gene PRX1 contributing to survival when encountered with P. aurantium. The fungicidal activity was largely retained in intracellular vesicles of the amoebae. Following their isolation, the content of these vesicles induced immediate killing and lysis of C. parapsilosis in vitro. Proteomic analysis identified 56 vesicular proteins from P. aurantium. Although completely unknown proteins were dominant, many of them could be categorised as hydrolytic enzymes targeting the fungal cell wall, indicating that fungal cell wall structures are under selection pressure by predatory phagocytes in natural environments. TAKE AWAY: The amoeba Protostelium aurantium feeds on fungi, such as Candida parapsilosis. Ingested yeast cells are exposed to reactive oxygen species. A copper exporter and a peroxiredoxin contribute to fungal defence. Yeast cells undergo intracellular lysis. Lysis occurs via a cocktail of hydrolytic enzymes from intracellular vesicles.


Assuntos
Amoeba , Candida parapsilosis , Parede Celular , Homeostase , Homicídio , Oxirredução , Proteômica
3.
Environ Microbiol ; 21(5): 1809-1820, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30868709

RESUMO

Size and diverse morphologies pose a primary challenge for phagocytes such as innate immune cells and predatory amoebae when encountering fungal prey. Although filamentous fungi can escape phagocytic killing by pure physical constraints, unicellular spores and yeasts can mask molecular surface patterns or arrest phagocytic processing. Here, we show that the fungivorous amoeba Protostelium aurantium was able to adjust its killing and feeding mechanisms to these different cell shapes. Yeast-like fungi from the major fungal groups of basidiomycetes and ascomycetes were readily internalized by phagocytosis, except for the human pathogen Candida albicans whose mannoprotein coat was essential to escape recognition by the amoeba. Dormant spores of the filamentous fungus Aspergillus fumigatus also remained unrecognized, but swelling and the onset of germination induced internalization and intracellular killing by the amoeba. Mature hyphae of A. fumigatus were mostly attacked from the hyphal tip and killed by an actin-mediated invasion of fungal filaments. Our results demonstrate that predatory pressure imposed by amoebae in natural environments selects for distinct survival strategies in yeast and filamentous fungi but commonly targets the fungal cell wall as a crucial molecular pattern associated to prey and pathogens.


Assuntos
Amoeba/microbiologia , Fungos/fisiologia , Leveduras/fisiologia , Amoeba/fisiologia , Parede Celular , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/isolamento & purificação , Hifas/genética , Hifas/crescimento & desenvolvimento , Fagocitose , Leveduras/genética , Leveduras/crescimento & desenvolvimento , Leveduras/isolamento & purificação
4.
Chem Sci ; 14(2): 393-394, 2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36687350

RESUMO

[This corrects the article DOI: 10.1039/D2SC04558C.].

5.
Gut Microbes ; 14(1): 2154548, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36503341

RESUMO

Candida species are the most prevalent cause of invasive fungal infections, of which Candida albicans is the most common. Translocation across the epithelial barrier into the bloodstream by intestinal-colonizing C. albicans cells serves as the main source for systemic infections. Understanding the fungal mechanisms behind this process will give valuable insights on how to prevent such infections and keep C. albicans in the commensal state in patients with predisposing conditions. This review will focus on recent developments in characterizing fungal translocation mechanisms, compare what we know about enteric bacterial pathogens with C. albicans, and discuss the different proposed hypotheses for how C. albicans enters and disseminates through the bloodstream immediately following translocation.


Assuntos
Candida albicans , Microbioma Gastrointestinal , Humanos , Intestinos
6.
Chem Sci ; 13(43): 12808-12817, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36519034

RESUMO

Hypervalent iodine reagents have recently emerged as powerful tools for late-stage peptide and protein functionalization. Herein we report a tyrosine bioconjugation methodology for the introduction of hypervalent iodine onto biomolecules under physiological conditions. Tyrosine residues were engaged in a selective addition onto the alkynyl bond of ethynylbenziodoxolones (EBX), resulting in stable vinylbenziodoxolones (VBX) bioconjugates. The methodology was successfully applied to peptides and proteins and tolerated all other nucleophilic residues, with the exception of cysteine. The generated VBX were further functionalized by palladium-catalyzed cross-coupling and azide-alkyne cycloaddition reactions. The method could be successfully used to modify bioactive natural products and native streptavidin to enable thiol-mediated cellular uptake.

7.
Nat Commun ; 13(1): 3192, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680868

RESUMO

Intestinal microbiota dysbiosis can initiate overgrowth of commensal Candida species - a major predisposing factor for disseminated candidiasis. Commensal bacteria such as Lactobacillus rhamnosus can antagonize Candida albicans pathogenicity. Here, we investigate the interplay between C. albicans, L. rhamnosus, and intestinal epithelial cells by integrating transcriptional and metabolic profiling, and reverse genetics. Untargeted metabolomics and in silico modelling indicate that intestinal epithelial cells foster bacterial growth metabolically, leading to bacterial production of antivirulence compounds. In addition, bacterial growth modifies the metabolic environment, including removal of C. albicans' favoured nutrient sources. This is accompanied by transcriptional and metabolic changes in C. albicans, including altered expression of virulence-related genes. Our results indicate that intestinal colonization with bacteria can antagonize C. albicans by reshaping the metabolic environment, forcing metabolic adaptations that reduce fungal pathogenicity.


Assuntos
Candidíase , Lacticaseibacillus rhamnosus , Candida , Candida albicans , Candidíase/microbiologia , Virulência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa