Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(1): e0175923, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112453

RESUMO

The isolation and selection of yeast strains to improve the quality of the cachaça-Brazilian Spirit-have been studied in our research group. Our strategy considers Saccharomyces cerevisiae as the predominant species involved in sugarcane juice fermentation and the presence of different stressors (osmolarity, temperature, ethanol content, and competition with other microorganisms). It also considers producing balanced concentrations of volatile compounds (higher alcohols and acetate and/or ethyl esters), flocculation capacity, and ethanol production. Since the genetic bases behind these traits of interest are not fully established, the whole genome sequencing of 11 different Saccharomyces cerevisiae strains isolated and selected from different places was analyzed to identify the presence of a specific genetic variation common to cachaça yeast strains. We have identified 20,128 single-nucleotide variants shared by all genomes. Of these shared variants, 37 were new variants (being six missenses), and 4,451 were identified as missenses. We performed a detailed functional annotation (using enrichment analysis, protein-protein interaction network analysis, and database and in-depth literature searches) of these new and missense variants. Many genes carrying these variations were involved in the phenotypes of flocculation, tolerance to fermentative stresses, and production of volatile compounds and ethanol. These results demonstrate the existence of a genetic profile shared by the 11 strains under study that could be associated with the applied selective strategy. Thus, this study points out genes and variants that may be used as molecular markers for selecting strains well suited to the fermentation process, including genetic improvement by genome editing, ultimately producing high-quality beverages and adding value.IMPORTANCEThis work demonstrates the existence of new genetic markers related to different phenotypes used to select yeast strains and mutations in genes directly involved in producing flavoring compounds and ethanol, and others related to flocculation and stress resistance.


Assuntos
Perfil Genético , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fermentação , Etanol , Fenótipo , Genômica
2.
Biotechnol Lett ; 46(2): 201-211, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38280177

RESUMO

OBJECTIVES: Apiosidases are enzymes that cleave the glycosidic bond between the monosaccharides linked to apiose, a branched chain furanose found in the cell walls of vascular plants and aquatic monocots. There is biotechnological interest in this enzyme group because apiose is the flavor-active compound of grapes, fruit juice, and wine, and the monosaccharide is found to be a plant secondary metabolite with pharmaceutical properties. However, functional and structural studies of this enzyme family are scarce. Recently, a glycoside hydrolase family member GH140 was isolated from Bacteroides thetaiotaomicron and identified as an endo-apiosidase. RESULTS: The structural characterization and functional identification of a second GH140 family enzyme, termed MmApi, discovered through mangrove soil metagenomic approach, are described. Among the various substrates tested, MmApi exhibited activity on an apiose-containing oligosaccharide derived from the pectic polysaccharide rhamnogalacturonan-II. While the crystallographic model of MmApi was similar to the endo-apiosidase from Bacteroides thetaiotaomicron, differences in the shape of the binding sites indicated that MmApi could cleave apioses within oligosaccharides of different compositions. CONCLUSION: This enzyme represents a novel tool for researchers interested in studying the physiology and structure of plant cell walls and developing biocatalytic strategies for drug and flavor production.


Assuntos
Microbiota , Polissacarídeos , Oligossacarídeos/química , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/química , Monossacarídeos
3.
J Biol Chem ; 298(5): 101891, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35378128

RESUMO

Deciphering how enzymes interact, modify, and recognize carbohydrates has long been a topic of interest in academic, pharmaceutical, and industrial research. Carbohydrate-binding modules (CBMs) are noncatalytic globular protein domains attached to carbohydrate-active enzymes that strengthen enzyme affinity to substrates and increase enzymatic efficiency via targeting and proximity effects. CBMs are considered auspicious for various biotechnological purposes in textile, food, and feed industries, representing valuable tools in basic science research and biomedicine. Here, we present the first crystallographic structure of a CBM8 family member (CBM8), DdCBM8, from the slime mold Dictyostelium discoideum, which was identified attached to an endo-ß-1,4-glucanase (glycoside hydrolase family 9). We show that the planar carbohydrate-binding site of DdCBM8, composed of aromatic residues, is similar to type A CBMs that are specific for crystalline (multichain) polysaccharides. Accordingly, pull-down assays indicated that DdCBM8 was able to bind insoluble forms of cellulose. However, affinity gel electrophoresis demonstrated that DdCBM8 also bound to soluble (single chain) polysaccharides, especially glucomannan, similar to type B CBMs, although it had no apparent affinity for oligosaccharides. Therefore, the structural characteristics and broad specificity of DdCBM8 represent exceptions to the canonical CBM classification. In addition, mutational analysis identified specific amino acid residues involved in ligand recognition, which are conserved throughout the CBM8 family. This advancement in the structural and functional characterization of CBMs contributes to our understanding of carbohydrate-active enzymes and protein-carbohydrate interactions, pushing forward protein engineering strategies and enhancing the potential biotechnological applications of glycoside hydrolase accessory modules.


Assuntos
Dictyostelium , Carboidratos/química , Cristalografia por Raios X , Dictyostelium/metabolismo , Glucanos/metabolismo , Glicosídeo Hidrolases , Ligantes , Polissacarídeos/metabolismo
4.
Appl Microbiol Biotechnol ; 107(13): 4165-4185, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37212882

RESUMO

The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.


Assuntos
Vias Biossintéticas , Ácidos Cumáricos , Ácidos Cumáricos/metabolismo , Biomassa , Biocatálise , Engenharia Metabólica
5.
J Biol Chem ; 296: 100385, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33556371

RESUMO

Glycoside hydrolases (GHs) are involved in the degradation of a wide diversity of carbohydrates and present several biotechnological applications. Many GH families are composed of enzymes with a single well-defined specificity. In contrast, enzymes from the GH16 family can act on a range of different polysaccharides, including ß-glucans and galactans. SCLam, a GH16 member derived from a soil metagenome, an endo-ß-1,3(4)-glucanase (EC 3.2.1.6), can cleave both ß-1,3 and ß-1,4 glycosidic bonds in glucans, such as laminarin, barley ß-glucan, and cello-oligosaccharides. A similar cleavage pattern was previously reported for other GH16 family members. However, the molecular mechanisms for this dual cleavage activity on (1,3)- and (1,4)-ß-D-glycosidic bonds by laminarinases have not been elucidated. In this sense, we determined the X-ray structure of a presumably inactive form of SCLam cocrystallized with different oligosaccharides. The solved structures revealed general bound products that are formed owing to residual activities of hydrolysis and transglycosylation. Biochemical and biophysical analyses and molecular dynamics simulations help to rationalize differences in activity toward different substrates. Our results depicted a bulky aromatic residue near the catalytic site critical to select the preferable configuration of glycosidic bonds in the binding cleft. Altogether, these data contribute to understanding the structural basis of recognition and hydrolysis of ß-1,3 and ß-1,4 glycosidic linkages of the laminarinase enzyme class, which is valuable for future studies on the GH16 family members and applications related to biomass conversion into feedstocks and bioproducts.


Assuntos
Proteínas de Bactérias/metabolismo , Celulases/metabolismo , Glucanos/metabolismo , Proteínas de Bactérias/química , Sequência de Carboidratos , Domínio Catalítico , Celulases/química , Cristalografia por Raios X/métodos , Glucanos/classificação , Glicosídeos/química , Glicosídeos/metabolismo , Hidrólise , Simulação de Dinâmica Molecular , Microbiologia do Solo , Especificidade por Substrato
6.
Appl Microbiol Biotechnol ; 106(7): 2503-2516, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35352150

RESUMO

The biocatalytic production of fuels and chemicals from plant biomass represents an attractive alternative to fossil fuel-based refineries. In this context, the mining and characterization of novel biocatalysts can promote disruptive innovation opportunities in the field of lignocellulose conversion and valorization. In the present work, we conducted the biochemical and structural characterization of two novel hydroxycinnamic acid catabolic enzymes, isolated from a lignin-degrading microbial consortium, a feruloyl-CoA synthetase, and a feruloyl-CoA hydratase-lyase, named LM-FCS2 and LM-FCHL2, respectively. Besides establishing the homology model structures for novel FCS and FCHL members with unique characteristics, the enzymes presented interesting biochemical features: LM-FCS2 showed stability in alkaline pHs and was able to convert a wide array of p-hydroxycinnamic acids to their respective CoA-thioesters, including sinapic acid; LM-FCHL2 efficiently converted feruloyl-CoA and p-coumaroyl-CoA into vanillin and 4-hydroxybenzaldehyde, respectively, and could produce vanillin directly from ferulic acid. The coupled reaction of LM-FCS2 and LM-FCHL2 produced vanillin, not only from commercial ferulic acid but also from a crude lignocellulosic hydrolysate. Collectively, this work illuminates the structure and function of two critical enzymes involved in converting ferulic acid into high-value molecules, thus providing valuable concepts applied to the development of plant biomass biorefineries. KEY POINTS: • Comprehensive characterization of feruloyl-CoA synthetase from metagenomic origin. • Novel low-resolution structures of hydroxycinnamate catabolic enzymes. • Production of vanillin via enzymatic reaction using lignocellulosic hydrolysates.


Assuntos
Lignina , Metagenoma , Escherichia coli/genética , Hiperlipidemia Familiar Combinada , Lignina/metabolismo , Solo
7.
Appl Microbiol Biotechnol ; 104(19): 8309-8326, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32813063

RESUMO

Arabinanases from glycoside hydrolase family GH93 are enzymes with exo-activity that hydrolyze the α-1,5 bonds between arabinose residues present on arabinan. Currently, several initiatives aiming to use byproducts rich in arabinan such as pectin and sugar beet pulp as raw material to produce various compounds of interest are being developed. However, it is necessary to use robust enzymes that have an optimal performance under pH and temperature conditions used in the industrial processes. In this work, the first GH93 from the thermophilic fungus Thermothielavioides terrestris (Abn93T) was heterologously expressed in Aspergillus nidulans, purified and biochemically characterized. The enzyme is a thermophilic glycoprotein (optimum activity at 70 °C) with prolonged stability in acid pHs (4.0 to 6.5). The presence of glycosylation affected slightly the hydrolytic capacity of the enzyme, which was further increased by 34% in the presence of 1 mM CoCl2. Small-angle X-ray scattering results show that Abn93T is a globular-like-shaped protein with a slight bulge at one end. The hydrolytic mechanism of the enzyme was elucidated using capillary zone electrophoresis and molecular docking calculations. Abn93T has an ability to produce (in synergism with arabinofuranosidases) arabinose and arabinobiose from sugar beet arabinan, which can be explored as fermentable sugars and prebiotics. KEY POINTS: • Thermophilic exo-arabinanase from family GH93 • Molecular basis of arabinan depolymerization.


Assuntos
Arabinose , Glicosídeo Hidrolases , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Simulação de Acoplamento Molecular , Sordariales , Especificidade por Substrato
8.
World J Microbiol Biotechnol ; 36(11): 166, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33000321

RESUMO

The physicochemical pretreatment is an important step to reduce biomass recalcitrance and facilitate further processing of plant lignocellulose into bioproducts. This process results in soluble and insoluble biomass fractions, and both may contain by-products that inhibit enzymatic biocatalysts and microbial fermentation. These fermentation inhibitory compounds (ICs) are produced during the degradation of lignin and sugars, resulting in phenolic and furanic compounds, and carboxylic acids. Therefore, detoxification steps may be required to improve lignocellulose conversion by microoganisms. Several physical and chemical methods, such as neutralization, use of activated charcoal and organic solvents, have been developed and recommended for removal of ICs. However, biological processes, especially enzyme-based, have been shown to efficiently remove ICs with the advantage of minimizing environmental issues since they are biogenic catalysts and used in low quantities. This review focuses on describing several enzymatic approaches to promote detoxification of lignocellulosic hydrolysates and improve the performance of microbial fermentation for the generation of bioproducts. Novel strategies using classical carbohydrate active enzymes (CAZymes), such as laccases (AA1) and peroxidases (AA2), as well as more advanced strategies using prooxidant, antioxidant and detoxification enzymes (dubbed as PADs), i.e. superoxide dismutases, are discussed as perspectives in the field.


Assuntos
Biomassa , Lignina/metabolismo , Ácidos Carboxílicos/metabolismo , Fermentação , Lacase/metabolismo , Peroxidases/metabolismo , Superóxido Dismutase/metabolismo
9.
Curr Microbiol ; 75(12): 1609-1618, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30209570

RESUMO

The evolution of the symbiotic association with microbes allowed termites to decompose ingested lignocellulose from plant-derived substrates, including herbivore dung and soil humus. Representatives of the Syntermitinae (Termitidae) range in their feeding habits from wood and litter-feeding to humus-feeding species. However, only limited information is available about their feeding ecology and associated microbial communities. Here we conducted a study of the microbial communities associated to the termite Procornitermes araujoi using Illumina sequencing of the 16S and ITS rRNA genes. This species has been previously included in different feeding guilds. However, most aspects of its feeding ecology are unknown, especially those associated to its symbiotic microbiota. Our results showed that the microbial communities of termite guts and nest substrates of P. araujoi differed significantly for bacteria and fungi. Firmicutes dominated the bacterial gut community of both workers and soldiers, whereas Actinobacteria was found in higher prevalence in the nest walls. Sordariomycetes was the most abundant fungal class in both gut and nest samples and distinguish P. araujoi from the grass/litter feeding Cornitermes cumulans. Our results also showed that diversity of gut bacteria were higher in P. araujoi and Silvestritermes euamignathus than in the grass/litter feeders (C. cumulans and Syntermes dirus), that could indicate an adaptation of the microbial community of polyphagous termites to the higher complexity of their diets.


Assuntos
Isópteros/microbiologia , Microbiota , Actinobacteria/isolamento & purificação , Animais , Ascomicetos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Fungos/classificação , Fungos/genética , Fungos/isolamento & purificação , Microbioma Gastrointestinal , Microbiota/genética , Tipagem Molecular , Poaceae , Solo
10.
J Biol Chem ; 291(45): 23734-23743, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27621314

RESUMO

Carbohydrate-binding modules (CBMs) are appended to glycoside hydrolases and can contribute to the degradation of complex recalcitrant substrates such as the plant cell wall. For application in bioethanol production, novel enzymes with high catalytic activity against recalcitrant lignocellulosic material are being explored and developed. In this work, we report the functional and structural study of CBM_E1, which was discovered through a metagenomics approach and is the founding member of a novel CBM family, CBM81. CBM_E1, which is linked to an endoglucanase, displayed affinity for mixed linked ß1,3-ß1,4-glucans, xyloglucan, Avicel, and cellooligosaccharides. The crystal structure of CBM_E1 in complex with cellopentaose displayed a canonical ß-sandwich fold comprising two ß-sheets. The planar ligand binding site, observed in a parallel orientation with the ß-strands, is a typical feature of type A CBMs, although the expected affinity for bacterial crystalline cellulose was not detected. Conversely, the binding to soluble glucans was enthalpically driven, which is typical of type B modules. These unique properties of CBM_E1 are at the interface between type A and type B CBMs.


Assuntos
Bactérias/enzimologia , Celulase/metabolismo , Metagenoma , Saccharum/microbiologia , Microbiologia do Solo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , Celulase/química , Celulase/genética , Celulose/metabolismo , Cristalografia por Raios X , Glucanos/metabolismo , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oligossacarídeos/metabolismo , Conformação Proteica , Termodinâmica , Xilanos/metabolismo
11.
Mol Microbiol ; 102(4): 642-671, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27538790

RESUMO

The serine-threonine kinase TOR, the Target of Rapamycin, is an important regulator of nutrient, energy and stress signaling in eukaryotes. Sch9, a Ser/Thr kinase of AGC family (the cAMP-dependent PKA, cGMP- dependent protein kinase G and phospholipid-dependent protein kinase C family), is a substrate of TOR. Here, we characterized the fungal opportunistic pathogen Aspergillus fumigatus Sch9 homologue (SchA). The schA null mutant was sensitive to rapamycin, high concentrations of calcium, hyperosmotic stress and SchA was involved in iron metabolism. The ΔschA null mutant showed increased phosphorylation of SakA, the A. fumigatus Hog1 homologue. The schA null mutant has increased and decreased trehalose and glycerol accumulation, respectively, suggesting SchA performs different roles for glycerol and trehalose accumulation during osmotic stress. The schA was transcriptionally regulated by osmotic stress and this response was dependent on SakA and MpkC. The double ΔschA ΔsakA and ΔschA ΔmpkC mutants were more sensitive to osmotic stress than the corresponding parental strains. Transcriptomics and proteomics identified direct and indirect targets of SchA post-exposure to hyperosmotic stress. Finally, ΔschA was avirulent in a low dose murine infection model. Our results suggest there is a complex network of interactions amongst the A. fumigatus TOR, SakA and SchA pathways.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Serina-Treonina Quinases/genética , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/metabolismo , Feminino , Proteínas Fúngicas/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Endogâmicos BALB C , Pressão Osmótica/fisiologia , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Esporos Fúngicos/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Virulência
12.
Biochim Biophys Acta Proteins Proteom ; 1865(12): 1758-1769, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28890404

RESUMO

Carbohydrate-Active Enzymes are key enzymes for biomass-to-bioproducts conversion. α-l-Arabinofuranosidases that belong to the Glycoside Hydrolase family 62 (GH62) have important applications in biofuel production from plant biomass by hydrolyzing arabinoxylans, found in both the primary and secondary cell walls of plants. In this work, we identified a GH62 α-l-arabinofuranosidase (AnAbf62Awt) that was highly secreted when Aspergillus nidulans was cultivated on sugarcane bagasse. The gene AN7908 was cloned and transformed in A. nidulans for homologous production of AnAbf62Awt, and we confirmed that the enzyme is N-glycosylated at asparagine 83 by mass spectrometry analysis. The enzyme was also expressed in Escherichia coli and the studies of circular dichroism showed that the melting temperature and structural profile of AnAbf62Awt and the non-glycosylated enzyme from E. coli (AnAbf62Adeglyc) were highly similar. In addition, the designed glycomutant AnAbf62AN83Q presented similar patterns of secretion and activity to the AnAbf62Awt, indicating that the N-glycan does not influence the properties of this enzyme. The crystallographic structure of AnAbf62Adeglyc was obtained and the 1.7Å resolution model showed a five-bladed ß-propeller fold, which is conserved in family GH62. Mutants AnAbf62AY312F and AnAbf62AY312S showed that Y312 was an important substrate-binding residue. Molecular dynamics simulations indicated that the loop containing Y312 could access different conformations separated by moderately low energy barriers. One of these conformations, comprising a local minimum, is responsible for placing Y312 in the vicinity of the arabinose glycosidic bond, and thus, may be important for catalytic efficiency.


Assuntos
Aspergillus nidulans/enzimologia , Celulose/farmacologia , Glicosídeo Hidrolases/química , Aspergillus nidulans/crescimento & desenvolvimento , Cristalografia , Glicosídeo Hidrolases/fisiologia , Glicosilação , Simulação de Dinâmica Molecular
13.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 395-403, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28088615

RESUMO

The cellulases from Glycoside Hydrolyses family 12 (GH12) play an important role in cellulose degradation and plant cell wall deconstruction being widely used in a number of bioindustrial processes. Aiming to contribute toward better comprehension of these class of the enzymes, here we describe a high-yield secretion of a endoglucanase GH12 from Aspegillus terreus (AtGH12), which was cloned and expressed in Aspergillus nidulans strain A773. The purified protein was used for complete biochemical and functional characterization. The optimal temperature and pH of the enzyme were 55°C and 5.0 respectively, which has high activity against ß-glucan and xyloglucan and also is active toward glucomannan and CMC. The enzyme retained activity up to 60°C. AtGH12 is strongly inhibited by Cu2+, Fe2+, Cd2+, Mn2+, Ca2+, Zn2+ and EDTA, whereas K+, Tween, Cs+, DMSO, Triton X-100 and Mg2+ enhanced the enzyme activity. Furthermore, SAXS data reveal that the enzyme has a globular shape and CD analysis demonstrated a prevalence of a ß-strand structure corroborating with typical ß-sheets fold commonly found for other endoglucanases from GH12 family.


Assuntos
Aspergillus , Celulase , Clonagem Molecular , Proteínas Fúngicas , Expressão Gênica , Aspergillus/enzimologia , Aspergillus/genética , Celulase/biossíntese , Celulase/química , Celulase/genética , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Recombinantes
14.
Extremophiles ; 21(4): 775-788, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28500387

RESUMO

Thermus filiformis is an aerobic thermophilic bacterium isolated from a hot spring in New Zealand. The experimental study of the mechanisms of thermal adaptation is important to unveil response strategies of the microorganism to stress. In this study, the main pathways involved on T. filiformis thermoadaptation, as well as, thermozymes with potential biotechnological applications were revealed based on omics approaches. The strategy adopted in this study disclosed that pathways related to the carbohydrate metabolism were affected in response to thermoadaptation. High temperatures triggered oxidative stress, leading to repression of genes involved in glycolysis and the tricarboxylic acid cycle. During heat stress, the glucose metabolism occurred predominantly via the pentose phosphate pathway instead of the glycolysis pathway. Other processes, such as protein degradation, stringent response, and duplication of aminoacyl-tRNA synthetases, were also related to T. filiformis thermoadaptation. The heat-shock response influenced the carotenoid profile of T. filiformis, favoring the synthesis of thermozeaxanthins and thermobiszeaxanthins, which are related to membrane stabilization at high temperatures. Furthermore, antioxidant enzymes correlated with free radical scavenging, including superoxide dismutase, catalase and peroxidase, and metabolites, such as oxaloacetate and α-ketoglutarate, were accumulated at 77 °C.


Assuntos
Adaptação Fisiológica , Extremófilos/fisiologia , Thermus/fisiologia , Temperatura Alta , Espectrometria de Massas , Metabolômica , Proteômica , Transcriptoma
15.
Appl Microbiol Biotechnol ; 101(7): 2893-2903, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28013403

RESUMO

Xyloglucan is the most abundant hemicellulose in primary walls of spermatophytes except for grasses. Xyloglucan-degrading enzymes are important in lignocellulosic biomass hydrolysis because they remove xyloglucan, which is abundant in monocot-derived biomass. Fungal genomes encode numerous xyloglucanase genes, belonging to at least six glycoside hydrolase (GH) families. GH74 endo-xyloglucanases cleave xyloglucan backbones with unsubstituted glucose at the -1 subsite or prefer xylosyl-substituted residues in the -1 subsite. In this work, 137 GH74-related genes were detected by examining 293 Eurotiomycete genomes and Ascomycete fungi contained one or no GH74 xyloglucanase gene per genome. Another interesting feature is that the triad of tryptophan residues along the catalytic cleft was found to be widely conserved among Ascomycetes. The GH74 from Aspergillus fumigatus (AfXEG74) was chosen as an example to conduct comprehensive biochemical studies to determine the catalytic mechanism. AfXEG74 has no CBM and cleaves the xyloglucan backbone between the unsubstituted glucose and xylose-substituted glucose at specific positions, along the XX motif when linked to regions deprived of galactosyl branches. It resembles an endo-processive activity, which after initial random hydrolysis releases xyloglucan-oligosaccharides as major reaction products. This work provides insights on phylogenetic diversity and catalytic mechanism of GH74 xyloglucanases from Ascomycete fungi.


Assuntos
Aspergillus fumigatus/enzimologia , Genoma Fúngico , Glucanos/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Xilanos/metabolismo , Ascomicetos/enzimologia , Ascomicetos/genética , Aspergillus fumigatus/genética , Domínio Catalítico/genética , Glicosídeo Hidrolases/genética , Glicosídeos/metabolismo , Hidrólise , Filogenia , Especificidade por Substrato
16.
Biotechnol Lett ; 37(7): 1455-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25801671

RESUMO

OBJECTIVES: The use of endo-arabinanase from Bacillus licheniformis (ABNase) for sugarcane saccharification has been evaluated by enzyme immobilization and commercial cocktail supplement with the immobilized heterologous protein. RESULTS: Biochemical characterization of the purified ABNase showed that the catalytic activity was strongly inhibited by 5 mM Cu(2+), Zn(2+) or Fe(3+). The optimum pH and temperature for activity were 5.5-6.5 and 35-40 °C, respectively. The enzyme stability increased 128-fold when immobilized with glyoxyl agarose, and the hydrolysis of pretreated sugar cane biomass increased by 15 % when a commercial enzyme cocktail was supplemented with immobilized ABNase. CONCLUSION: Pectin hydrolysis by recombinant ABNase plays a role in the effective application of enzymatic cocktails for biomass saccharification.


Assuntos
Bacillus/enzimologia , Biomassa , Reatores Biológicos , Enzimas Imobilizadas/metabolismo , Glicosídeo Hidrolases/metabolismo , Bacillus/genética , Celulose , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Glicosídeo Hidrolases/genética , Especificidade por Substrato
17.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140963, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37690538

RESUMO

Cellulases from anaerobic fungi are enzymes less-studied biochemically and structurally than cellulases from bacteria and aerobic fungi. Currently, only thirteen GH5 cellulases from anaerobic fungi were biochemically characterized and two crystal structures were reported. In this context, here, we report the functional and biophysical characterization of a novel multi-modular cellulosomal GH5 endoglucanase from the anaerobic gut fungus Piromyces finnis (named here PfGH5). Multiple sequences alignments indicate that PfGH5 is composed of a GH5 catalytic domain and a CBM1 carbohydrate-binding module connected through a CBM10 dockerin module. Our results showed that PfGH5 is an endoglucanase from anaerobic fungus with a large spectrum of activity. PfGH5 exhibited preference for hydrolysis of oat ß-glucan, followed by galactomannan, carboxymethyl cellulose, mannan, lichenan and barley ß-glucan, therefore displaying multi-functionality. For oat ß-glucan, PfGH5 reaches its optimum enzymatic activity at 40 °C and pH 5.5, with Km of 7.1 µM. Ion exchange chromatography analyzes revealed the production of oligosaccharides with a wide degree of polymerization indicated that PfGH5 has endoglucanase activity. The ability to bind and cleave different types of carbohydrates evidence the potential of PfGH5 for use in biotechnology and provide a useful basis for future investigation and application of new anaerobic fungi enzymes.


Assuntos
Celulase , Celulases , Celulase/química , Anaerobiose , Fungos
18.
Biotechnol Biofuels Bioprod ; 16(1): 5, 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624471

RESUMO

BACKGROUND: Lignin is an attractive alternative for producing biobased chemicals. It is the second major component of the plant cell wall and is an abundant natural source of aromatic compounds. Lignin degradation using microbial oxidative enzymes that depolymerize lignin and catabolize aromatic compounds into central metabolic intermediates is a promising strategy for lignin valorization. However, the intrinsic heterogeneity and recalcitrance of lignin severely hinder its biocatalytic conversion. In this context, examining microbial degradation systems can provide a fundamental understanding of the pathways and enzymes that are useful for lignin conversion into biotechnologically relevant compounds. RESULTS: Lignin-degrading catabolism of a novel Rhodosporidium fluviale strain LM-2 was characterized using multi-omic strategies. This strain was previously isolated from a ligninolytic microbial consortium and presents a set of enzymes related to lignin depolymerization and aromatic compound catabolism. Furthermore, two catabolic routes for producing 4-vinyl guaiacol and vanillin were identified in R. fluviale LM-2. CONCLUSIONS: The multi-omic analysis of R. fluviale LM-2, the first for this species, elucidated a repertoire of genes, transcripts, and secreted proteins involved in lignin degradation. This study expands the understanding of ligninolytic metabolism in a non-conventional yeast, which has the potential for future genetic manipulation. Moreover, this work unveiled critical pathways and enzymes that can be exported to other systems, including model organisms, for lignin valorization.

19.
Sci Rep ; 13(1): 19182, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932303

RESUMO

Simultaneous intracellular depolymerization of xylo-oligosaccharides (XOS) and acetate fermentation by engineered Saccharomyces cerevisiae offers significant potential for more cost-effective second-generation (2G) ethanol production. In the present work, the previously engineered S. cerevisiae strain, SR8A6S3, expressing enzymes for xylose assimilation along with an optimized route for acetate reduction, was used as the host for expressing two ß-xylosidases, GH43-2 and GH43-7, and a xylodextrin transporter, CDT-2, from Neurospora crassa, yielding the engineered SR8A6S3-CDT-2-GH34-2/7 strain. Both ß-xylosidases and the transporter were introduced by replacing two endogenous genes, GRE3 and SOR1, that encode aldose reductase and sorbitol (xylitol) dehydrogenase, respectively, and catalyse steps in xylitol production. The engineered strain, SR8A6S3-CDT-2-GH34-2/7 (sor1Δ gre3Δ), produced ethanol through simultaneous XOS, xylose, and acetate co-utilization. The mutant strain produced 60% more ethanol and 12% less xylitol than the control strain when a hemicellulosic hydrolysate was used as a mono- and oligosaccharide source. Similarly, the ethanol yield was 84% higher for the engineered strain using hydrolysed xylan, compared with the parental strain. Xylan, a common polysaccharide in lignocellulosic residues, enables recombinant strains to outcompete contaminants in fermentation tanks, as XOS transport and breakdown occur intracellularly. Furthermore, acetic acid is a ubiquitous toxic component in lignocellulosic hydrolysates, deriving from hemicellulose and lignin breakdown. Therefore, the consumption of XOS, xylose, and acetate expands the capabilities of S. cerevisiae for utilization of all of the carbohydrate in lignocellulose, potentially increasing the efficiency of 2G biofuel production.


Assuntos
Saccharomyces cerevisiae , Xilosidases , Saccharomyces cerevisiae/metabolismo , Xilanos/metabolismo , Xilose/metabolismo , Etanol/metabolismo , Engenharia Metabólica , Xilitol/metabolismo , Oligossacarídeos/metabolismo , Fermentação , D-Xilulose Redutase/genética , D-Xilulose Redutase/metabolismo , Xilosidases/metabolismo , Acetatos/metabolismo
20.
J Struct Biol ; 177(2): 469-76, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22155669

RESUMO

The breakdown of ß-1,4-mannoside linkages in a variety of mannan-containing polysaccharides is of great importance in industrial processes such as kraft pulp delignification, food processing and production of second-generation biofuels, which puts a premium on studies regarding the prospection and engineering of ß-mannanases. In this work, a two-domain ß-mannanase from Thermotoga petrophila that encompasses a GH5 catalytic domain with a C-terminal CBM27 accessory domain, was functionally and structurally characterized. Kinetic and thermal denaturation experiments showed that the CBM27 domain provided thermo-protection to the catalytic domain, while no contribution on enzymatic activity was observed. The structure of the catalytic domain determined by SIRAS revealed a canonical (α/ß)(8)-barrel scaffold surrounded by loops and short helices that form the catalytic interface. Several structurally related ligand molecules interacting with TpMan were solved at high-resolution and resulted in a wide-range representation of the subsites forming the active-site cleft with residues W134, E198, R200, E235, H283 and W284 directly involved in glucose binding.


Assuntos
Proteínas de Bactérias/química , Bacilos Gram-Negativos Anaeróbios Retos, Helicoidais e Curvos/enzimologia , Manosidases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Domínio Catalítico , Cristalografia por Raios X , Estabilidade Enzimática , Glucose/química , Cinética , Maltose/química , Manosidases/genética , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Desnaturação Proteica , Deleção de Sequência , Especificidade por Substrato , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa