Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2220132120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307476

RESUMO

Understanding and predicting the outcome of the interaction of light with DNA has a significant impact on the study of DNA repair and radiotherapy. We report on a combination of femtosecond pulsed laser microirradiation at different wavelengths, quantitative imaging, and numerical modeling that yields a comprehensive picture of photon-mediated and free-electron-mediated DNA damage pathways in live cells. Laser irradiation was performed under highly standardized conditions at four wavelengths between 515 nm and 1,030 nm, enabling to study two-photon photochemical and free-electron-mediated DNA damage in situ. We quantitatively assessed cyclobutane pyrimidine dimer (CPD) and γH2AX-specific immunofluorescence signals to calibrate the damage threshold dose at these wavelengths and performed a comparative analysis of the recruitment of DNA repair factors xeroderma pigmentosum complementation group C (XPC) and Nijmegen breakage syndrome 1 (Nbs1). Our results show that two-photon-induced photochemical CPD generation dominates at 515 nm, while electron-mediated damage dominates at wavelengths ≥620 nm. The recruitment analysis revealed a cross talk between nucleotide excision and homologous recombination DNA repair pathways at 515 nm. Numerical simulations predicted electron densities and electron energy spectra, which govern the yield functions of a variety of direct electron-mediated DNA damage pathways and of indirect damage by •OH radicals resulting from laser and electron interactions with water. Combining these data with information on free electron-DNA interactions gained in artificial systems, we provide a conceptual framework for the interpretation of the wavelength dependence of laser-induced DNA damage that may guide the selection of irradiation parameters in studies and applications that require the selective induction of DNA lesions.


Assuntos
Dano ao DNA , Elétrons , Dímeros de Pirimidina , Reparo do DNA , Lasers
2.
Cytometry A ; 97(9): 882-886, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32583531

RESUMO

Operating shared resource laboratories (SRLs) in times of pandemic is a challenge for research institutions. In a multiuser, high-turnover working space, the transmission of infectious agents is difficult to control. To address this challenge, imaging core facility managers being members of German BioImaging discussed how shared microscopes could be operated with minimal risk of spreading SARS-CoV-2 between users and staff. Here, we describe the resulting guidelines and explain their rationale, with a focus on separating users in space and time, protective face masks, and keeping surfaces virus-free. These recommendations may prove useful for other types of SRLs. © 2020 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Betacoronavirus/patogenicidade , Pesquisa Biomédica/organização & administração , Infecções por Coronavirus/prevenção & controle , Controle de Infecções , Laboratórios/organização & administração , Microscopia , Saúde Ocupacional , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , COVID-19 , Comportamento Cooperativo , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Descontaminação , Contaminação de Equipamentos/prevenção & controle , Alemanha , Humanos , Exposição Ocupacional/prevenção & controle , Equipamento de Proteção Individual , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , Fatores de Proteção , Pesquisadores/organização & administração , Medição de Risco , Fatores de Risco , SARS-CoV-2 , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa