Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Microb Ecol ; 82(4): 942-960, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33656687

RESUMO

Information concerning arbuscular mycorrhizal (AM) fungal geographical distribution in tropical and subtropical soils from the Atlantic Forest (a global hotspot of biodiversity) are scarce and often restricted to the evaluation of richness and abundance of AM fungal species at specific ecosystems or local landscapes. In this study, we hypothesized that AM fungal diversity and community composition in subtropical soils would display fundamental differences in their geographical patterns, shaped by spatial distance and land-use change, at local and regional scales. AM fungal community composition was examined by spore-based taxonomic analysis, using soil trap cultures. Acaulospora koskei and Glomus were found as generalists, regardless of mesoregions and land uses. Other Acaulospora species were also found generalists within mesoregions. Land-use change and intensification did not influence AM fungal composition, partially rejecting our first hypothesis. We then calculated the distance-decay of similarities among pairs of AM fungal communities and the distance-decay relationship within and over mesoregions. We also performed the Mantel test and redundancy analysis to discriminate the main environmental drivers of AM fungal diversity and composition turnover. Overall, we found significant distance-decays for all land uses. We also observed a distance-decay relationship within the mesoregion scale (< 104 km) and these changes were correlated mainly to soil type (not land use), with the secondary influence of both total organic carbon and clay contents. AM fungal species distribution presented significant distance-decays, regardless of land uses, which was indicative of dispersal limitation, a stochastic neutral process. Although, we found evidence that, coupled with dispersal limitation, niche differentiation also played a role in structuring AM fungal communities, driven by long-term historical contingencies, as represented by soil type, resulting from different soil origin and mineralogy across mesoregions.


Assuntos
Micobioma , Micorrizas , Biodiversidade , Ecossistema , Florestas , Fungos , Micorrizas/genética , Solo , Microbiologia do Solo
2.
Mycorrhiza ; 30(5): 611-621, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32556837

RESUMO

The use of genetically modified (GM) plants has increased in recent decades, but there are uncertainties about their effects on soil microbial communities. Aiming to quantify root colonization and characterize arbuscular mycorrhizal fungi (AMF) communities associated with roots and rhizosphere soil of different maize genotypes, a field trial was carried out in Southern Brazil with three maize genotypes as follows: a GM hybrid (DKB 240 VTPRO), its non-modified isoline (DKB 240), and a landrace (Pixurum). Soil samples were collected to evaluate the occurrence of AMF during the growth of corn genotypes at sowing and V3 (vegetative), R1 (flowering), and R3 (grain formation) stages of the crop. The occurrence of AMF was determined by the morphological identification of spores, and by analyzing AMF community composition in soil and roots of maize, using PCR-DGGE. The GM genotype of maize promoted lower mycorrhizal colonization in the vegetative stage and had lower sporulation at grain development than the conventional hybrid and the landrace maize. Twenty AMF morphotypes were identified and 13 were associated with all maize genotypes. The genera Acaulospora, Glomus, and Dentiscutata had the largest numbers of species. There were no differences in AMF community composition due to maize genotypes or genetic modification, but crop phenological stages affected AMF communities associated with maize roots.


Assuntos
Micobioma , Micorrizas , Brasil , Raízes de Plantas , Microbiologia do Solo , Esporos Fúngicos , Zea mays
3.
J Environ Sci (China) ; 67: 330-343, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778166

RESUMO

Arbuscular mycorrhizal fungi (AMF) are important during revegetation of mining sites, but few studies compared AMF community in revegetated sites with pristine adjacent ecosystems. The aim of this study was to assess AMF species richness in a revegetated iron-mining site and adjacent ecosystems and to relate AMF occurrence to soil chemical parameters. Soil samples were collected in dry and rainy seasons in a revegetated iron-mining site (RA) and compared with pristine ecosystems of forest (FL), canga (NG), and Cerrado (CE). AMF species were identified by spore morphology from field and trap cultures and by LSU rDNA sequencing using Illumina. A total of 62 AMF species were recovered, pertaining to 18 genera and nine families of Glomeromycota. The largest number of species and families were detected in RA, and Acaulospora mellea and Glomus sp1 were the most frequent species. Species belonging to Glomeraceae and Acaulosporaceae accounted for 42%-48% of total species richness. Total number of spores and mycorrhizal inoculum potential tended to be higher in the dry than in the rainy season, except in RA. Sequences of uncultured Glomerales were dominant in all sites and seasons and five species were detected exclusively by DNA-based identification. Redundancy analysis evidenced soil pH, organic matter, aluminum, and iron as main factors influencing AMF presence. In conclusion, revegetation of the iron-mining site seems to be effective in maintaining a diverse AMF community and different approaches are complementary to reveal AMF species, despite the larger number of species being identified by traditional identification of field spores.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Micorrizas/fisiologia , Microbiologia do Solo , Biodiversidade , Florestas , Ferro , Mineração , Raízes de Plantas/microbiologia , Esporos Fúngicos
4.
Mycorrhiza ; 24(8): 571-80, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24722862

RESUMO

The present study evaluated the efficiency of lignocellulosic agrowastes produced in Brazil as substrates for production of on farm AMF inoculum and tested different diluents and inoculation techniques. In a first experiment, Sorghum bicolor seedlings were colonized with Rhizophagus clarus or Claroideoglomus etunicatus and transplanted to 20 L bags containing sugarcane bagasse (SC), king palm leaf sheets (KP), or barley hulls (BH) mixed (1:1:1 or 2:1:1, v/v/v) with sand and rice shell. SC and KP were conducive for production of spores and infectious propagules. A number of infectious propagules obtained were greater than with BH and ranged from 233-350 propagules cm(-3) for both isolates in SC and KP at the1:1:1 mix dilution. Number of spores of both fungi was affected mainly by the SC agrowaste, and spore densities were significantly higher compared to KP and BH. In a second experiment, SC was mixed with soil or sand and inoculation consisted of transplanting colonized seedlings or adding soil inoculum. Number of propagules tended to differ for each fungus according to the inoculation technique or diluent. It is concluded from the data that SC and KP are suitable agrowastes to be incorporated in substrates for producing AMF inoculum using the on farm method.


Assuntos
Agricultura/métodos , Resíduos Industriais , Lignina/química , Micorrizas/fisiologia , Sorghum/microbiologia , Raízes de Plantas/microbiologia , Microbiologia do Solo , Esporos Fúngicos/crescimento & desenvolvimento
5.
Mycorrhiza ; 22(4): 247-58, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22391803

RESUMO

Arbuscular mycorrhizal fungi (AMF) are grouped in a monophyletic group, the phylum Glomeromycota. In this review, the history and complexity of the taxonomy and systematics of these obligate biotrophs is addressed by recognizing four periods. The initial discovery period (1845-1974) is characterized by description mainly of sporocarp-forming species and the proposal of a classification for these fungi. The following alpha taxonomy period (1975-1989) established a solid morphological basis for species identification and classification, resulting in a profuse description of new species and a need to standardize the nomenclature of spore subcellular structures. The cladistics period from 1990 to 2000 saw the first cladistic classification of AMF based on phenotypic characters only. At the end of this period, genetic characters played a role in defining taxa and elucidating evolutionary relationships within the group. The most recent phylogenetic synthesis period (2001 to present) started with the proposal of a new classification based on genetic characters using sequences of the multicopy rRNA genes.


Assuntos
Glomeromycota/classificação , Micologia/história , Micorrizas/classificação , História do Século XIX , História do Século XX , História do Século XXI
6.
Sci Total Environ ; 802: 149843, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34455279

RESUMO

Losses of microbial diversity in degraded ecosystems still have obscure consequences, especially when considering the interaction between arbuscular mycorrhizal fungi (AMF) and soil bacteria. This study investigates the effect of decreasing microbial biomass on mycorrhizal attributes and soil quality indicators. The dilution-to-extinction approach was applied in microcosms to search for associations among bacterial diversity, mycorrhizal attributes, and soil quality indicators. The experiment was conducted with four soil treatments (undiluted control 100 = D0, 10-3 = D3, 10-6 = D6, and 10-9 = D9) from a short-term (two years = 2Y) and a long-term (15 years = 15Y) coal mine revegetation area. Microcosms were inoculated with 300 spores of Acaulospora colombiana, Gigaspora albida, and Claroideoglomus etunicatum with millet as the host plant. Results included the total number of AMF spores, mycorrhizal colonization, soil aggregation, glomalin, fluorescein diacetate hydrolysis (FDA), basal soil respiration, microbial biomass, and soil bacterial microbiome. Larger differences were observed between areas than between dilution treatments within the sampling area. Attributes that presented differences in the dilutions compared to D0 2Y samples were mycorrhizal colonization (D0 = 85% and D9 = 43.3%), FDA (D0 = 77.2% and D9 = 55.5%), extractable glomalin-related soil protein (D0 = 0.09 and D9 = 0.11) and bacterial diversity (D0 = 7.3 and D6 = 5.3). D0 15Y samples presented differences in microbial biomass nitrogen (D0: 232.0) and bacterial diversity (D0: 7.9, D9: 5.6) compared to the dilutions. Bacterial microbiome present in the D0 samples formed distinct clusters as to other samples and correlated with soil aggregation and basal respiration attributes. Results suggest that AMF inoculation and dilution-to-extinction did not affect soil quality indicators preeminently, but the bacterial community is affected and can influence the process of environmental revegetation. A long-term revegetation period is substantial to improve quality indicators and establish the diversity of microorganisms and consequently revegetation in areas impacted by coal mining.


Assuntos
Minas de Carvão , Microbiota , Micorrizas , Biomassa , Fungos , Raízes de Plantas , Indicadores de Qualidade em Assistência à Saúde , Solo , Microbiologia do Solo
7.
Mycorrhiza ; 21(4): 255-67, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20645112

RESUMO

Arbuscular mycorrhizal fungi (AMF) were surveyed for species richness and abundance in sporulation in six distinct land uses in the western Amazon region of Brazil. Areas included mature pristine forest and sites converted to pasture, crops, agroforestry, young and old secondary forest. A total of 61 AMF morphotypes were recovered and 30% of them could not be identified to known species. Fungal communities were dominated by Glomus species but Acaulospora species produced the most abundant sporulation. Acaulospora gedanensis cf., Acaulospora foveata, Acaulospora spinosa, Acaulospora tuberculata, Glomus corymbiforme, Glomus sp15, Scutellospora pellucida, and Archaeospora trappei sporulated in all land use areas. Total spore numbers were highly variable among land uses. Mean species richness in crop, agroforestry, young and old secondary forest sites was twice that in pristine forest and pasture. fungal communities were dominated in all land use areas except young secondary forest by two or three species which accounted for 48% to 63% of all sporulation. Land uses influenced AMF community in (1) frequency of occurrence of sporulating AMF species, (2) mean species diversity, and (3) relative spore abundance. Conversion of pristine forest into distinct land uses does not appear to reduce AMF diversity. Cultural practices adopted in this region maintain a high diversity of arbuscular mycorrhizal fungi.


Assuntos
Biodiversidade , Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Microbiologia do Solo , Brasil , Fungos/classificação , Fungos/crescimento & desenvolvimento , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Esporos Fúngicos/classificação , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação
8.
Front Microbiol ; 11: 553679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33510711

RESUMO

Arbuscular mycorrhizal fungi (AMF-Glomeromycota) are a group of soil fungi with a widespread occurrence in terrestrial ecosystems where they play important roles that influence plant growth and ecosystem processes. The aim of this paper is to reveal AMF distribution in the Neotropics based on an extensive biogeography database with literature data from the last five decades. All four orders and 11 families were reported in the Neotropics. 221 species (69% of the total number of species for the phylum) were registered in the Neotropics pertaining to 37 genera. Acaulospora, Glomus, Scutellospora, and Funneliformis were the most speciose genera and represented by 47, 29, 15, and 13 species, respectively. Seventy-six species were originally described from Neotropics, which represents 24% of the total diversity of Glomeromycota. The most representative families were Gigasporaceae, Ambisporaceae, and Acaulosporaceae with 89%, 80%, and 79% of species within each family detected in the Neotropics, respectively. AMF were detected in 11 biomes and 52 ecological regions in 19 countries. Biomes with the largest number of species were Tropical and Subtropical Moist Forests (186 species), Tropical and Subtropical Dry Broadleaf forests (127 species), and Tropical and Subtropical Grasslands (124 species), and Jaccard's similarity among them was 53-57%. Mean annual temperature and precipitation were not correlated with total AMF species richness. The Neotropics biomes shelter a large amount of the total diversity of Glomeromycota and studies of occurrence of these fungi should be encouraged considering their importance in maintaining terrestrial ecosystems.

9.
Braz J Microbiol ; 40(1): 111-21, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24031328

RESUMO

The aim of this work was to evaluate the occurrence of arbuscular mycorrhizal fungi (AMF) species diversity in soil samples from the Amazon region under distinct land use systems (Forest, Old Secondary Forest, Young Secondary Forest, Agroforestry systems, Crops and Pasture) using two distinct trap cultures. Traps established using Sorghum sudanense and Vigna unguiculata (at Universidade Regional de Blumenau -FURB) and Brachiaria decumbens and Neonotonia wightii (at Universidade Federal de Lavras - UFLA) were grown for 150 days in greenhouse conditions, when spore density and species identification were evaluated. A great variation on species richness was detected in several samples, regardless of the land use systems from where samples were obtained. A total number of 24 AMF species were recovered using both methods of trap cultures, with FURB's traps yielding higher number of species. Acaulospora delicata, A. foveata, Entrophospora colombiana and two undescribed Glomus species were the most abundant and frequent species recovered from the traps. Number of species decreased in each genus according to this order: Acaulospora, Glomus, Entrophospora, Gigaspora, Archaeospora, Scutellospora and Paraglomus. Spore numbers were higher in Young Secondary Forest and Pastures. Our study demonstrated that AMF have a widespread occurrence in all land use systems in Amazon and they sporulate more abundantly in trap cultures from land uses under interference than in the pristine Forest ecosystem.

10.
PLoS One ; 14(1): e0209093, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30620745

RESUMO

Agroecology aims to maintain ecosystem services by minimizing the impact of agriculture and promoting the use of biological potential. Arbuscular mycorrhizal fungi (AMF) are elements which are key to improving crop productivity and soil quality. It is pertinent to understand how agricultural management in the tropics affects the AMF spatio-temporal community composition, especially in crops of global importance, such as coffee (Coffea arabica L.). Soil and root samples were collected from three localities under three management systems (agroecological, conventional and forest fragment), during the phenological stages of coffee (flowering, grain filling, harvesting). Spores were extracted for morphological identification and molecular community analysis by PCR-DGGE. Dendrograms were prepared and the bands were sequenced and analyzed by bioinformatics. No differences were observed in the richness of morphospecies between management systems, localities and period, but little is known about tropical species. Molecular analysis showed that the agroecological management system was similar to natural forest and with a higher diversity indices than conventional management. Locality and period of sample affect AMF community composition. It is necessary to associate classical taxonomic evaluations with molecular biological techniques because different approaches can lead to different outcomes. This study contributes to the understanding of the impact of agriculture management systems on AMF and provides evidence that agroecology is a management system applicable to sustainable coffee production.


Assuntos
Ecossistema , Micorrizas/genética , Micorrizas/patogenicidade , Agricultura/métodos , Coffea/microbiologia , Biologia Computacional , Produtos Agrícolas/microbiologia , Micorrizas/classificação , Reação em Cadeia da Polimerase , Microbiologia do Solo
11.
Braz J Microbiol ; 45(3): 995-1005, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477936

RESUMO

Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development.


Assuntos
Agricultura/métodos , Biodiversidade , Micorrizas/crescimento & desenvolvimento , Saccharum/microbiologia , Brasil , Micorrizas/classificação , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Microbiologia do Solo
12.
J Hazard Mater ; 262: 1105-15, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23102714

RESUMO

Arbuscular mycorrhizal fungi (AMF) are ubiquitous and establish important symbiotic relationships with the majority of the plants, even in soils contaminated with arsenic (As). In order to better understand the ecological relationships of these fungi with excess As in soils and their effects on plants in tropical conditions, occurrence and diversity of AMF were evaluated in areas affected by gold mining activity in Minas Gerais State, Brazil. Soils of four areas with different As concentrations (mg dm(-3)) were sampled: reference Area (10); B1 (subsuperficial layer) (396); barren material (573), and mine waste (1046). Soil sampling was carried out in rainy and dry seasons, including six composite samples per area (n = 24). AMF occurred widespread in all areas, being influenced by As concentrations and sampling periods. A total of 23 species were identified, belonging to the following genus: Acaulospora (10 species), Scutellospora (4 species), Racocetra (3 species), Glomus (4 species), Gigaspora (1 species) and Paraglomus (1 species). The most frequent species occurring in all areas were Paraglomus occultum, Acaulospora morrowiae and Glomus clarum. The predominance of these species indicates their high tolerance to excess As. Although arsenic contamination reduced AMF species richness, presence of host plants tended to counterbalance this reduction.


Assuntos
Arsênio/química , Glomeromycota/metabolismo , Micorrizas/metabolismo , Plantas/microbiologia , Microbiologia do Solo , Poluentes do Solo/análise , Biodegradação Ambiental , Brasil , Análise Discriminante , Ecologia , Monitoramento Ambiental/métodos , Mineração , Raízes de Plantas/metabolismo , Análise de Componente Principal , Chuva , Rizosfera , Solo , Especificidade da Espécie
13.
Ciênc. agrotec., (Impr.) ; 41(5): 511-525, Sept.-Oct. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-890649

RESUMO

ABSTRACT Arbuscular mycorrhizal fungi (AMF) interact symbiotically with most plant species, facilitating revegetation of areas under rehabilitation. The aim of this study was to evaluate the inoculum potential, density, and diversity of AMF spores in five environments, as well as the relation of species with soil properties. Soil samples were collected in five environments in a mining area and its surroundings in the Quadrilátero Ferrífero, Minas Gerais (Brazil): tailings piles in rehabilitation with grass, canga, Cerrado, native forest, and eucalyptus plantation; these samples were subjected to chemical and physical analyses. Spores were directly extracted from field samples and from trap cultures (TCs) established in two locations in the Southeast and South regions of Brazil for taxonomic identification of the species. Species richness, the Shannon diversity index (H'), and equitability were determined. Principal component analysis (PCA) was used to identify soil properties that most influenced AMF occurrence. Spore density showed no significant difference among the environments. A total of 59 AMF species were found. This is the first report of the occurrence of Acaulospora nivalis and Acaulospora alpina in Brazil. Higher H' and species richness in the field were found in tailings piles and lower in canga. Canga showed higher inoculum potential. The development of TCs in two locations allowed a wider diversity of AMF species to be captured. Environments of the Quadrilátero Ferrífero are hotspots of AMF diversity, and the soil pH and exchangeable S and P contents are the properties that best explain the distribution of AMF species.


RESUMO Fungos micorrízicos arbusculares (AMF) interagem simbioticamente com a maioria das espécies de plantas, facilitando a revegetação de áreas sob reabilitação. O objetivo deste trabalho foi de avaliar o potencial de inóculo, densidade e diversidade de esporos de AMF em cinco ambientes, e a relação das espécies com atributos do solo. Amostras de solo foram coletadas em cinco ambientes em área de mineração e seu entorno no Quadrilátero Ferrífero, Minas Gerais (Brasil): pilha de rejeitos em reabilitação com capim, canga, Cerrado, mata nativa e plantação de eucalipto, e submetidas a análises química e física. A extração de esporos direto de amostras de campo e de culturas armadilha (TCs), estabelecidas em dois locais nas regiões Sul e Sudeste do Brasil, foi feita para identificação taxonômica das espécies. Foram determinados riqueza de espécies, índice de diversidade de Shannon (H') e equitabilidade. Análise de componentes principais (PCA) foi utilizada para identificar atributos do solo que mais influenciaram a ocorrência de AMF. A densidade de esporos não diferiu significativamente entre os ambientes. Um total de 59 espécies de AMF foram encontradas, destacando-se o primeiro relato de ocorrência de Acaulospora nivalis e Acaulospora alpina no Brasil. Maiores H' e riqueza de espécies no campo foram encontradas em pilhas de rejeitos e menores em canga, embora canga tenha apresentado maior potencial de inóculo. A condução de TCs em dois locais proporcionou captura de maior diversidade de espécies de AMF. Ambientes do Quadrilátero Ferrífero são hotspots de diversidade de AMF e o pH do solo e teores trocáveis ​​de S e P são os atributos que melhor explicam a distribuição das espécies de AMF.

14.
Braz. j. microbiol ; 45(3): 995-1005, July-Sept. 2014. graf, tab
Artigo em Inglês | LILACS | ID: lil-727031

RESUMO

Sugarcane (Saccharum spp.) is grown on over 8 million ha in Brazil and is used to produce ethanol and sugar. Some sugarcane fields are burned to facilitate harvesting, which can affect the soil microbial community. However, whether sugarcane pre-harvest burning affects the community of arbuscular mycorrhizal fungi (AMF) and symbioses development is not known. In this study, we investigated the early impacts of harvest management on AMF spore communities and root colonization in three sugarcane varieties, under two harvest management systems (no-burning and pre-harvest burning). Soil and root samples were collected in the field after the first harvest of sugarcane varieties SP813250, SP801842, and RB72454, and AMF species were identified based on spore morphology. Diversity indices were determined based on spore populations and root colonization determined as an indicator of symbioses development. Based on the diversity indices, spore number and species occurrence in soil, no significant differences were observed among the AMF communities, regardless of harvest management type, sugarcane variety or interactions between harvest management type and sugarcane variety. However, mycorrhiza development was stimulated in sugarcane under the no-burning management system. Our data suggest that the sugarcane harvest management system may cause early changes in arbuscular mycorrhiza development.


Assuntos
Agricultura/métodos , Biodiversidade , Micorrizas/crescimento & desenvolvimento , Saccharum/microbiologia , Brasil , Micorrizas/classificação , Micorrizas/isolamento & purificação , Raízes de Plantas/microbiologia , Microbiologia do Solo
15.
Mycorrhiza ; 17(3): 235-240, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17151876

RESUMO

The mycorrhizal status of epiphytic, rupicolous, and terrestrial bromeliad species from the Brazilian Atlantic Rain Forest has been examined. Roots of 13 species of bromeliads were analyzed for the presence of mycorrhizal structures such as arbuscules, hyphae, and vesicles as well as other fungal structures. Rhizosphere soil was sampled to identify arbuscular mycorrhizal fungal (AMF) species associated only with terrestrial bromeliad species. Most specimens collected were epiphytic bromeliads in the genera Aechmea, Bilbergia, Nidularium, Tillandsia, and Vriesea. Differentiating structures of AMF were found in only three species of bromeliads. The pattern of mycorrhizal colonization was mainly internal, and external mycelium and arbuscules were observed only in the terrestrial Nidularium procerum. Root endophytes with dark brown septate mycelium, thin external hyphae, and Rhizoctonia-like sclerotia were also detected in some root segments. A total of ten spore morphotypes were recovered from the rhizosphere of N. procerum, with Acaulospora mellea, A. foveata, and Glomus sp. being the most common species recovered. Our study demonstrated that most of the epiphytic species are not associated with AMF. We attribute this mainly to the exposed bare root conditions found in epiphytic bromeliads.


Assuntos
Bromeliaceae/microbiologia , Micorrizas/isolamento & purificação , Brasil , Bromeliaceae/classificação , Ecossistema , Especificidade da Espécie , Simbiose , Clima Tropical
16.
Braz. j. microbiol ; 40(1): 111-121, Jan.-Mar. 2009. graf, tab
Artigo em Inglês | LILACS | ID: lil-513126

RESUMO

The aim of this work was to evaluate the occurrence of arbuscular mycorrhizal fungi (AMF) species diversity in soil samples from the Amazon region under distinct land use systems (Forest, Old Secondary Forest, Young Secondary Forest, Agroforestry systems, Crops and Pasture) using two distinct trap cultures. Traps established using Sorghum sudanense and Vigna unguiculata (at Universidade Regional de Blumenau - FURB) and Brachiaria decumbens and Neonotonia wightii (at Universidade Federal de Lavras - UFLA) were grown for 150 days in greenhouse conditions, when spore density and species identification were evaluated. A great variation on species richness was detected in several samples, regardless of the land use systems from where samples were obtained. A total number of 24 AMF species were recovered using both methods of trap cultures, with FURB';s traps yielding higher number of species. Acaulospora delicata, A. foveata, Entrophospora colombiana and two undescribed Glomus species were the most abundant and frequent species recovered from the traps. Number of species decreased in each genus according to this order: Acaulospora, Glomus, Entrophospora, Gigaspora, Archaeospora, Scutellospora and Paraglomus. Spore numbers were higher in Young Secondary Forest and Pastures. Our study demonstrated that AMF have a widespread occurrence in all land use systems in Amazon and they sporulate more abundantly in trap cultures from land uses under interference than in the pristine Forest ecosystem.


O objetivo deste trabalho foi avaliar a ocorrência de espécies de fungos micorrízicos arbusculares (FMAs) em amostras de solos da região Amazônica sob diferentes sistemas de uso da terra (Floresta, Capoeira Velha, Capoeira Nova, Sistema Agroflorestal, Culturas e Pastagens) usando dois métodos de culturas armadilhas. Culturas armadilhas estabelecidas com Sorghum sudanense e Vigna unguiculata (na Universidade Regional de Blumenau - FURB) e Brachiaria decumbens e Neonotonia wightii (na Universidade Federal de Lavras - UFLA) foram cultivadas por 150 dias em condições de casa-de-vegetação e avaliadas para o número de esporos e identificação das espécies. Uma grande variação na riqueza de espécies foi detectada em várias amostras, independente do sistema de uso da terra de onde as amostras foram obtidas. Um total de 24 espécies de FMAs foram recuperadas usando ambas metodologias de culturas armadilhas e as culturas estabelecidas na FURB produziram um número maior de espécies. Acaulospora delicata, A. foveata, Entrophospora colombiana e duas espécies não descritas de Glomus foram as espécies mais abundantes e freqüentes recuperadas das culturas armadilhas. O número de espécies diminui em cada gênero na seguinte ordem: Acaulospora, Glomus, Entrophospora, Gigaspora, Archaeospora, Scutellospora e Paraglomus. Número de esporos foi maior na Capoeira jovem e Pastagens. Nosso estudo demonstrou que os FMAs possuem uma ampla dispersão em todos os sistemas de uso na Amazônia e que eles esporulam mais abundantemente em culturas armadilhas estabelecidas de solos sob interferência antrópica do que em solos de Floresta nativa.


Assuntos
Microbiologia Ambiental , Fungos/genética , Fungos/isolamento & purificação , Variação Genética , Micorrizas/genética , Pastagens , Solo , Esporos Fúngicos , Métodos , Métodos , Árvores
17.
Braz. j. microbiol ; 37(3): 283-289, July-Sept. 2006. tab
Artigo em Inglês | LILACS | ID: lil-442132

RESUMO

The aim of this study was to obtain knowledge on arbuscular mycorrhizal (AM) associations in papaya (Caricapapaya, L.) in field soils and nursery conditions. Sixty seven soil and root samples were taken in February and May of 1996, from 47 commercial plantations in the North of Espirito Santo State and the West and South of Bahia State, in Brazil. Samples were used for direct spore counts, root colonization assessment and for trap culture with Sorghumbicolor (L.) Moench and Crotalariajuncea L. Additional sampling was done in commercial nurseries to evaluate mycorrhizal colonization. Although papaya cropping systems are usually under high input of fertilizers and pesticides, papaya roots showed considerable arbuscular mycorrhizal (AM) colonization, ranging from 6 percent to 83 percent. Colonization rates were most influenced by available soil P, correlated positively with percentage of sand and soil pH, but correlated negatively with soil clay content. AM colonization of nursery seedlings was very low in most samples. Field spore numbers varied from 34 to 444/30g of soil. All Glomerales families were represented and 24 fungal species identified. Glomusetunicatum, Paraglomusoccultum, Acaulosporascrobiculata and Gigaspora sp. were the most common species.


O trabalho objetivou a obtenção de conhecimento sobre a associação micorrízica arbuscular (MA) em mamoeiro (Carica papaya, L.) em condições de pomar e viveiro. Sessenta e sete amostras de solo e raízes foram coletadas em quarenta e sete pomares comerciais nos meses de fevereiro e maio de 1996, abrangendo o Norte do Espírito Santo e o Oeste e Sul da Bahia. Amostras foram usadas para contagem direta de esporos, avaliação da colonização radicular e para cultivo armadilha com Sorghum bicolor (L.) Moench e Crotalariajuncea (L.). Amostragens adicionais foram feitas em viveiros comerciais, para avaliar a colonização micorrízica. Embora os sistemas de cultivo do mamoeiro recebam grande quantidade de insumos na forma de fertilizantes e pesticidas, as raízes apresentaram percentagem de colonização radicular variando de 6 por cento a 83 por cento. As taxas de colonização mostraram-se relacionadas com o P disponível do solo, correlacionando-se positivamente com areia e pH do solo, mas negativamente com os teores de argila. Em viveiros, a percentagem de colonização nas plântulas foi baixa na maioria das amostras. Em campo o número de esporos variou de 34 a 444/30g de solo. Todas as famílias do filo Glomeromycota estiveram representadas e 24 espécies fúngicas foram identificadas. Glomusetunicatum, Paraglomusoccultum, Acaulosporascrobiculata e Gigaspora sp. foram as espécies de maior ocorrência.


Assuntos
Carica , Ecossistema , Fungos , Técnicas In Vitro , Plântula , Solo , Esporos Fúngicos , Métodos , Estudos de Amostragem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa