Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
Biomed Microdevices ; 20(4): 93, 2018 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-30374706

RESUMO

The use of radioactive nanoparticles as imaging and therapeutic agents is increasing globally. Indeed, the use of these nanoparticles as perfect theranostic agent is highly anticipated in the pharmaceutical market. Among the radioactive nanoparticles, liposomes, solid lipid nanoparticles and polymeric nanoparticles are the most studied. However little information among adverse reactions, absorbed dose and correct dose to achieve the theranostic goal in a translational application is available. We developed a radioactive polymeric nanoparticle and calculated the absorbed dose in animal model (Wistar rats) using the OLINDA/EXM program. The results showed that some nanoparticle were uptake in five organs and minor elimination through the gastrointestinal and urinary pathways. The data corroborates the safe use in terms of blood-brain barrier and did not show high uptake by liver. The dosimetry data support the safe use of radioactive nanoparticles as theranostic agent. Graphical abstract ᅟ.


Assuntos
Nanopartículas/uso terapêutico , Doses de Radiação , Nanomedicina Teranóstica , Animais , Marcação por Isótopo , Ratos , Ratos Wistar , Distribuição Tecidual
2.
Pediatr Radiol ; 47(6): 691-700, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28283725

RESUMO

BACKGROUND: The estimation of organ doses and effective doses for children receiving CT examinations is of high interest. Newer, more realistic anthropomorphic body models can provide information on individual organ doses and improved estimates of effective dose. MATERIALS AND METHODS: Previously developed body models representing 50th-percentile individuals at reference ages (newborn, 1, 5, 10 and 15 years) were modified to represent 10th, 25th, 75th and 90th height percentiles for both genders and an expanded range of ages (3, 8 and 13 years). We calculated doses for 80 pediatric reference phantoms from simulated chest-abdomen-pelvis exams on a model of a Philips Brilliance 64 CT scanner. Individual organ and effective doses were normalized to dose-length product (DLP) and fit as a function of body diameter. RESULTS: We calculated organ and effective doses for 80 reference phantoms and plotted them against body diameter. The data were well fit with an exponential function. We found DLP-normalized organ dose to correlate strongly with body diameter (R2>0.95 for most organs). Similarly, we found a very strong correlation with body diameter for DLP-normalized effective dose (R2>0.99). Our results were compared to other studies and we found average agreement of approximately 10%. CONCLUSION: We provide organ and effective doses for a total of 80 reference phantoms representing normal-stature children ranging in age and body size. This information will be valuable in replacing the types of vendor-reported doses available. These data will also permit the recording and tracking of individual patient doses. Moreover, this comprehensive dose database will facilitate patient matching and the ability to predict patient-individualized dose prior to examination.


Assuntos
Imagens de Fantasmas , Radiometria/métodos , Tomografia Computadorizada por Raios X , Adolescente , Tamanho Corporal , Criança , Pré-Escolar , Humanos , Lactente , Doses de Radiação
3.
Pediatr Radiol ; 45(12): 1771-80, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26142256

RESUMO

BACKGROUND: Organ dose is essential for accurate estimates of patient dose from CT. OBJECTIVE: To determine organ doses from a broad range of pediatric patients undergoing diagnostic chest-abdomen-pelvis CT and investigate how these relate to patient size. MATERIALS AND METHODS: We used a previously validated Monte Carlo simulation model of a Philips Brilliance 64 multi-detector CT scanner (Philips Healthcare, Best, The Netherlands) to calculate organ doses for 40 pediatric patients (M:F = 21:19; range 0.6-17 years). Organ volumes and positions were determined from the images using standard segmentation techniques. Non-linear regression was performed to determine the relationship between volume CT dose index (CTDIvol)-normalized organ doses and abdominopelvic diameter. We then compared results with values obtained from independent studies. RESULTS: We found that CTDIvol-normalized organ dose correlated strongly with exponentially decreasing abdominopelvic diameter (R(2) > 0.8 for most organs). A similar relationship was determined for effective dose when normalized by dose-length product (R(2) = 0.95). Our results agreed with previous studies within 12% using similar scan parameters (e.g., bowtie filter size, beam collimation); however results varied up to 25% when compared to studies using different bowtie filters. CONCLUSION: Our study determined that organ doses can be estimated from measurements of patient size, namely body diameter, and CTDIvol prior to CT examination. This information provides an improved method for patient dose estimation.


Assuntos
Tomografia Computadorizada Multidetectores/estatística & dados numéricos , Pelve/diagnóstico por imagem , Doses de Radiação , Radiografia Abdominal/estatística & dados numéricos , Radiografia Torácica/estatística & dados numéricos , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Método de Monte Carlo
5.
Health Phys ; 124(5): 397-406, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780284

RESUMO

ABSTRACT: The OLINDA/EXM version 2.0 personal computer code was created as an upgrade to the widely used OLINDA/EXM 1.0 and 1.1 codes. This paper documents the upgrades that were implemented. New decay data and anthropomorphic and biokinetic models were implemented in the software, and the software alpha and beta tested. Agreement of doses between the OLINDA/EXM codes 1 and 2 was very good. Use of the new anthropomorphic and biokinetic models results in understandable differences between the codes. Previous models were retained in the new code, and those results were identical to those in the previous code. OLINDA/EXM 2.0 represents an upgrade from version 1, with new modeling data recommended by the international community. It standardizes internal dose calculations for dose assessments in clinical trials with radiopharmaceuticals, theoretical calculations for existing pharmaceuticals, teaching, and other purposes.


Assuntos
Medicina Nuclear , Software , Cintilografia , Compostos Radiofarmacêuticos , Radiometria/métodos
6.
Blood ; 116(13): 2241-4, 2010 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-20522711

RESUMO

Care of patients with AL amyloidosis currently is limited by the lack of objective means to document disease extent, as well as therapeutic options that expedite removal of pathologic deposits. To address these issues, we have initiated a Phase I Exploratory IND study to determine the biodistribution of the fibril-reactive, amyloidolytic murine IgG1 mAb 11-1F4 labeled with I-124. Patients were infused with less than 1 mg (∼ 74 MBq) of GMP-grade antibody and imaged by PET/CT scan 48 and 120 hours later. Among 9 of 18 subjects, there was striking uptake of the reagent in liver, lymph nodes, bone marrow, intestine, or, unexpectedly, spleen (but not kidneys or heart). Generally, positive or negative results correlated with those obtained immunohistochemically using diagnostic tissue biopsy specimens. Based on these findings, we posit that (124)I-mAb m11-1F4 can be used to identify AL candidates for passive immunotherapy using the chimeric form of the antibody.


Assuntos
Amiloide/metabolismo , Amiloidose/diagnóstico por imagem , Amiloidose/metabolismo , Idoso , Animais , Anticorpos Monoclonais , Drogas em Investigação , Feminino , Humanos , Imunoglobulina G , Radioisótopos do Iodo , Masculino , Camundongos , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Radioimunodetecção , Distribuição Tecidual
7.
J Nucl Med ; 63(3): 485-492, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34353873

RESUMO

This paper presents standardized methods for performing dose calculations for radiopharmaceuticals. Various steps in the process are outlined, with some specific examples given. Special models for calculating time-activity integrals (urinary bladder, intestines) are also reviewed. This article can be used as a template for designing and executing kinetic studies for calculating radiation dose estimates from animal or human data.


Assuntos
Análise de Dados , Compostos Radiofarmacêuticos , Animais , Cinética , Doses de Radiação , Radiometria/métodos
8.
J Nucl Med ; 63(2): 316-322, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34353875

RESUMO

This paper presents standardized methods for collecting data to be used in performing dose calculations for radiopharmaceuticals. Various steps in the process are outlined, with some specific examples given. This document can be used as a template for designing and executing kinetic studies for calculating radiation dose estimates, from animal or human data.


Assuntos
Radiometria , Compostos Radiofarmacêuticos , Animais , Cinética , Doses de Radiação , Radiometria/métodos
9.
EJNMMI Res ; 12(1): 21, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35403982

RESUMO

BACKGROUND: Extrapolation of human absorbed doses (ADs) from biodistribution experiments on laboratory animals is used to predict the efficacy and toxicity profiles of new radiopharmaceuticals. Comparative studies between available animal-to-human dosimetry extrapolation methods are missing. We compared five computational methods for mice-to-human AD extrapolations, using two different radiopharmaceuticals, namely [111In]CHX-DTPA-scFv78-Fc and [68Ga]NODAGA-RGDyK. Human organ-specific time-integrated activity coefficients (TIACs) were derived from biodistribution studies previously conducted in our centre. The five computational methods adopted are based on simple direct application of mice TIACs to human organs (M1), relative mass scaling (M2), metabolic time scaling (M3), combined mass and time scaling (M4), and organ-specific allometric scaling (M5), respectively. For [68Ga]NODAGA-RGDyK, these methods for mice-to-human extrapolations were tested against the ADs obtained on patients, previously published by our group. Lastly, an average [68Ga]NODAGA-RGDyK-specific allometric parameter αnew was calculated from the organ-specific biological half-lives in mouse and humans and retrospectively applied to M3 and M4 to assess differences in human AD predictions with the α = 0.25 recommended by previous studies. RESULTS: For both radiopharmaceuticals, the five extrapolation methods showed significantly different AD results (p < 0.0001). In general, organ ADs obtained with M3 were higher than those obtained with the other methods. For [68Ga]NODAGA-RGDyK, no significant differences were found between ADs calculated with M3 and those obtained directly on human subjects (H) (p = 0.99; average M3/H AD ratio = 1.03). All other methods for dose extrapolations resulted in ADs significantly different from those calculated directly on humans (all p ≤ 0.0001). Organ-specific allometric parameters calculated using combined experimental [68Ga]NODAGA-RGDyK mice and human biodistribution data varied significantly. ADs calculated with M3 and M4 after the application of αnew = 0.17 were significantly different from those obtained by the application of α = 0.25 (both p < 0.001). CONCLUSIONS: Available methods for mouse-to-human dosimetry extrapolations provided significantly different results in two different experimental models. For [68Ga]NODAGA-RGDyK, the best approximation of human dosimetry was shown by M3, applying a metabolic scaling to the mouse organ TIACs. The accuracy of more refined extrapolation algorithms adopting model-specific metabolic scaling parameters should be further investigated.

10.
Mol Imaging Biol ; 24(3): 479-488, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34786667

RESUMO

PURPOSE: Accurate diagnosis of amyloidosis remains a significant clinical challenge and unmet need for patients. The amyloid-reactive peptide p5+14 radiolabeled with iodine-124 has been developed for the detection of amyloid by PET/CT imaging. In a first-in-human evaluation, the dosimetry and tissue distribution of 124I-p5+14 peptide in patients with systemic amyloidosis. Herein, we report the dosimetry and dynamic distribution in the first three enrolled patients with light chain-associated (AL) amyloidosis. PROCEDURES: The radiotracer was assessed in a single-site, open-label phase 1 study (NCT03678259). The first three patients received a single intravenous infusion of 124I-p5+14 peptide (≤37 MBq). Serial PET/CT imaging was performed during the 48 h post-infusion. Dosimetry was determined as a primary endpoint for each patient and gender-averaged mean values were calculated. Pharmacokinetic parameters were estimated from whole blood radioactivity measurements and organ-based time activity data. Lastly, the biodistribution of radiotracer in major organs was assessed visually and compared to clinically appreciated organ involvement. RESULTS: Infusion of the 124I-p5+14 was well tolerated with rapid uptake in the heart, kidneys, liver, spleen, pancreas, and lung. The gender-averaged whole-body effective radiation dose was estimated to be 0.23 (± 0.02) mSv/MBq with elimination of the radioactivity via renal and gastrointestinal routes. The whole blood elimination t1/2 of 21.9 ± 7.6 h. Organ-based activity concentration measurements indicated that AUClast tissue:blood ratios generally correlated with the anticipated presence of amyloid. Peptide uptake was observed in 4/5 clinically suspected organs, as noted in the medical record, as well as six anatomic sites generally associated with amyloidosis in this population. CONCLUSION: Peptide 124I-p5+14 rapidly distributes to anatomic sites consistent with the presence of amyloid in patients with systemic AL. The dosimetry estimates established in this cohort are acceptable for whole-body PET/CT imaging. Pharmacokinetic parameters are heterogeneous and consistent with uptake of the tracer in an amyloid compartment. PET/CT imaging of 124I-p5+14 may facilitate non-invasive detection of amyloid in multiple organ systems.


Assuntos
Amiloidose , Amiloidose de Cadeia Leve de Imunoglobulina , Amiloide/metabolismo , Amiloidose/diagnóstico por imagem , Humanos , Radioisótopos do Iodo , Peptídeos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de Pósitrons/métodos , Radiometria , Distribuição Tecidual
11.
Med Phys ; 38(8): 4824-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21928655

RESUMO

Yttrium-90 microsphere brachytherapy of the liver exploits the distinctive features of the liver anatomy to treat liver malignancies with beta radiation and is gaining more wide spread clinical use. This report provides a general overview of microsphere liver brachytherapy and assists the treatment team in creating local treatment practices to provide safe and efficient patient treatment. Suggestions for future improvements are incorporated with the basic rationale for the therapy and currently used procedures. Imaging modalities utilized and their respective quality assurance are discussed. General as well as vendor specific delivery procedures are reviewed. The current dosimetry models are reviewed and suggestions for dosimetry advancement are made. Beta activity standards are reviewed and vendor implementation strategies are discussed. Radioactive material licensing and radiation safety are discussed given the unique requirements of microsphere brachytherapy. A general, team-based quality assurance program is reviewed to provide guidance for the creation of the local procedures. Finally, recommendations are given on how to deliver the current state of the art treatments and directions for future improvements in the therapy.


Assuntos
Braquiterapia/normas , Neoplasias Hepáticas/radioterapia , Radioisótopos de Ítrio/uso terapêutico , Angiografia/normas , Física Médica , Humanos , Interpretação de Imagem Assistida por Computador/normas , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Imageamento por Ressonância Magnética , Microesferas , Tomografia por Emissão de Pósitrons , Garantia da Qualidade dos Cuidados de Saúde/normas , Radiometria/normas , Sociedades Médicas , Tomografia Computadorizada por Raios X , Estados Unidos , Radioisótopos de Ítrio/normas
12.
Mayo Clin Proc ; 95(3): 449-458, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138878

RESUMO

OBJECTIVE: To determine if heparin labeled with 99mTechnetium (99mTc) could be an imaging probe to detect eosinophil-related inflammation in eosinophilic esophagitis and to determine the biodistribution and radiation dosimetry of 99mTc-heparin oral administration using image-based dosimetry models with esophageal modeling. METHODS: Freshly prepared 99mTc-heparin was administered orally to 5 research subjects. Radioactivity was measured by whole-body scintigraphy and single-photon emission computed tomography during the 24 hours postadministration. Following imaging, endoscopic examination was performed. The biodistribution of esophageal radioactivity was compared with endoscopic findings, eosinophil counts in biopsy tissues, and immunostaining for eosinophil granule major basic protein-1 (eMBP1). These studies were conducted from July 1, 2013, until April 22, 2017. RESULTS: Oral administration of 99mTc-heparin was well tolerated in all 5 subjects. The entire esophagus could be visualized dynamically during oral administration. Bound esophageal radioactivity marked areas of inflammation as judged by endoscopy scores, by eosinophils per high power field and by localization of eMBP1 using immunostaining. Ninety percent of the radioactivity did not bind to the esophagus and passed through the gastrointestinal tract. CONCLUSION: The biodistribution of ingested 99mTc-heparin is almost exclusively localized to the gastrointestinal tract. Radiation exposure was highest in the lower gastrointestinal tract and was comparable with other orally administered diagnostic radiopharmaceuticals. The use of swallowed 99mTc-heparin may aid in assessing eosinophil-related inflammation in the esophagus.


Assuntos
Esofagite Eosinofílica/diagnóstico por imagem , Heparina/administração & dosagem , Compostos de Organotecnécio/administração & dosagem , Compostos Radiofarmacêuticos/administração & dosagem , Tomografia Computadorizada de Emissão de Fóton Único , Administração Oral , Adulto , Esofagoscopia , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição Tecidual , Imagem Corporal Total
13.
Radiology ; 253(2): 520-31, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19789227

RESUMO

The U.S. National Council on Radiation Protection and Measurements and United Nations Scientific Committee on Effects of Atomic Radiation each conducted respective assessments of all radiation sources in the United States and worldwide. The goal of this article is to summarize and combine the results of these two publicly available surveys and to compare the results with historical information. In the United States in 2006, about 377 million diagnostic and interventional radiologic examinations and 18 million nuclear medicine examinations were performed. The United States accounts for about 12% of radiologic procedures and about one-half of nuclear medicine procedures performed worldwide. In the United States, the frequency of diagnostic radiologic examinations has increased almost 10-fold (1950-2006). The U.S. per-capita annual effective dose from medical procedures has increased about sixfold (0.5 mSv [1980] to 3.0 mSv [2006]). Worldwide estimates for 2000-2007 indicate that 3.6 billion medical procedures with ionizing radiation (3.1 billion diagnostic radiologic, 0.5 billion dental, and 37 million nuclear medicine examinations) are performed annually. Worldwide, the average annual per-capita effective dose from medicine (about 0.6 mSv of the total 3.0 mSv received from all sources) has approximately doubled in the past 10-15 years.


Assuntos
Diagnóstico por Imagem/estatística & dados numéricos , Medicina Nuclear/estatística & dados numéricos , Doses de Radiação , Radiologia/estatística & dados numéricos , Diagnóstico por Imagem/tendências , Humanos , Internacionalidade , Estados Unidos
14.
J Nucl Med ; 60(7): 937-943, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31263080

RESUMO

With the recent approval of 177Lu-DOTATATE for use in gastroenteropancreatic neuroendocrine tumors, access to peptide receptor radionuclide therapy is increasing. Representatives from the North American Neuroendocrine Tumor Society and the Society of Nuclear Medicine and Molecular Imaging collaborated to develop a practical consensus guideline for the administration of 177Lu-DOTATATE. In this paper, we discuss patient screening, maintenance somatostatin analog therapy requirements, treatment location and room preparation, drug administration, and patient release as well as strategies for radiation safety, toxicity monitoring, management of potential complications, and follow-up. Controversies regarding the role of radiation dosimetry are discussed as well. This document is designed to provide practical guidance on how to safely treat patients with this therapy.


Assuntos
Tumores Neuroendócrinos/radioterapia , Medicina Nuclear , Octreotida/análogos & derivados , Compostos Organometálicos/uso terapêutico , Receptores de Somatostatina/metabolismo , Sociedades Médicas/normas , Medula Óssea/efeitos da radiação , Humanos , Rim/efeitos da radiação , Octreotida/administração & dosagem , Octreotida/efeitos adversos , Octreotida/uso terapêutico , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/efeitos adversos , Órgãos em Risco/efeitos da radiação , Radiometria , Padrões de Referência , Segurança
15.
EJNMMI Res ; 9(1): 53, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31187358

RESUMO

BACKGROUND: Biodistribution studies based on organ harvesting represent the gold standard pre-clinical technique for dose extrapolations. However, sequential imaging is becoming increasingly popular as it allows the extraction of longitudinal data from single animals, and a direct correlation with deterministic radiation effects. We assessed the feasibility of mouse-specific, microPET-based dosimetry of an antibody fragment labeled with the positron emitter 152Tb [(T1/2 = 17.5 h, Eß+mean = 1140 keV (20.3%)]. Image-based absorbed dose estimates were compared with those obtained from the extrapolation to 152Tb of a classical biodistribution experiment using the same antibody fragment labeled with 111In. 152Tb was produced by proton-induced spallation in a tantalum target, followed by mass separation and cation exchange chromatography. The endosialin-targeting scFv78-Fc fusion protein was conjugated with the chelator p-SCN-Bn-CHX-A"-DTPA, followed by labeling with either 152Tb or 111In. Micro-PET images of four immunodeficient female mice bearing RD-ES tumor xenografts were acquired 4, 24, and 48 h after the i.v. injection of 152Tb-CHX-DTPA-scFv78-Fc. After count/activity camera calibration, time-integrated activity coefficients (TIACs) were obtained for the following compartments: heart, lungs, liver, kidneys, intestines, tumor, and whole body, manually segmented on CT. For comparison, radiation dose estimates of 152Tb-CHX-DTPA-scFv78-Fc were extrapolated from mice dissected 4, 24, 48, and 96 h after the injection of 111In-CHX-DTPA-scFv78-Fc (3-5 mice per group). Imaging-derived and biodistribution-derived organ TIACs were used as input in the 25 g mouse model of OLINDA/EXM® 2.0, after appropriate mass rescaling. Tumor absorbed doses were obtained using the OLINDA2 sphere model. Finally, the relative percent difference (RD%) between absorbed doses obtained from imaging and biodistribution were calculated. RESULTS: RD% between microPET-based dosimetry and biodistribution-based dose extrapolations were + 12, - 14, and + 17 for the liver, the kidneys, and the tumors, respectively. Compared to biodistribution, the imaging method significantly overestimates the absorbed doses to the heart and the lungs (+ 89 and + 117% dose difference, respectively). CONCLUSIONS: MicroPET-based dosimetry of 152Tb is feasible, and the comparison with organ harvesting resulted in acceptable dose discrepancies for body districts that can be segmented on CT. These encouraging results warrant additional validation using radiolabeled biomolecules with a different biodistribution pattern.

16.
J Nucl Med ; 49(9): 1555-63, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18765586

RESUMO

UNLABELLED: The technical basis for the dose estimates for several radiopharmaceuticals used in nuclear cardiology is reviewed, and cases in which uncertainty has been encountered in the dosimetry of an agent are discussed. Also discussed is the issue of uncertainties in radiation dose estimates and how to compare the relative risks of studies. METHODS: Radiation dose estimates (organ absorbed doses and effective doses) from different literature sources were directly compared. Typical values for administered activity per study were used to compare doses that are to be expected in clinical applications. RESULTS: The effective doses for all agents varied from 2 to 15 mSv per study, with the lowest values being seen for (13)N-NH(3) and (15)O-H(2)O studies and the highest values being seen for (201)Tl-chloride studies. The effective doses for (99m)Tc- and (201)Tl-labeled agents differed by about a factor of 2, a factor that is comparable to the uncertainty in individual values. This uncertainty results from the application of standard anthropomorphic and biokinetic models, presumably representative of the exposed population, to individual patients. CONCLUSION: Considerations such as diagnostic accuracy, ease of use, image quality, and patient comfort and convenience should generally dictate the choice of a radiopharmaceutical, with radiation dose being only a secondary or even tertiary consideration. Counseling of nuclear medicine patients who may be concerned about exposure should include a reasonable estimate of the median dose for the type of examination and administered activity of the radiopharmaceutical; in addition, it should be explained that the theoretic risks of the procedure are orders of magnitude lower than the actual benefits of the examination. Providing numeric estimates of risks from studies to individual patients is inappropriate, given the uncertainties in the dose estimates and the limited predictive power of current dose-risk models in the low-dose (i.e., diagnostic) range.


Assuntos
Carga Corporal (Radioterapia) , Cardiologia/estatística & dados numéricos , Diagnóstico por Imagem/estatística & dados numéricos , Medicina Nuclear/estatística & dados numéricos , Radiometria/métodos , Compostos Radiofarmacêuticos/análise , Medição de Risco/métodos , Contagem Corporal Total/estatística & dados numéricos , Humanos , Eficiência Biológica Relativa , Fatores de Risco
17.
J Nucl Med ; 49(5): 853-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18413398

RESUMO

This paper presents a systematic analysis of the inherent uncertainty in internal dose calculations for radiopharmaceuticals. A generic equation for internal dose is presented, and the uncertainty in each of the individual terms is analyzed, with the relative uncertainty of all terms compared. The combined uncertainties in most radiopharmaceutical dose estimates will be typically at least a factor of 2 and may be considerably greater. In therapy applications, if patient-individualized absorbed doses are calculated, with attention being paid to accurate data gathering and analysis and measurement of individual organ volumes, many of the model-based uncertainties can be removed, and the total uncertainty in an individual dose estimate can be reduced to a value of perhaps +/-10%-20%. Radiation dose estimates for different diagnostic radiopharmaceuticals should be appreciated and considered, but small differences in dose estimates between radiopharmaceuticals should not be given too much importance when one is choosing radiopharmaceuticals for general clinical use. Diagnostic accuracy, ease of use, image quality, patient comfort, and other similar factors should predominate in the evaluation, with radiation dose being another issue considered while balancing risks and benefits appropriately.


Assuntos
Doses de Radiação , Radiometria/métodos , Compostos Radiofarmacêuticos/uso terapêutico , Incerteza , Feminino , Humanos , Masculino , Modelos Biológicos , Dosagem Radioterapêutica , Sensibilidade e Especificidade
18.
J Nucl Med ; 49(8): 1299-304, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18632816

RESUMO

UNLABELLED: Our purpose was to evaluate the safety profile and biodistribution behavior in healthy human volunteers of the new myocardial perfusion tracer bis[(dimethoxypropylphosphanyl)ethyl]ethoxyethylamine N,N'-bis(ethoxyethyl)dithiocarbamato nitrido technetium(V) (99mTc-N-DBODC). METHODS: Ten healthy male volunteers were injected with 99mTc-N-DBODC under both stress and rest conditions. Anterior and posterior planar gamma-camera images were collected at 5, 30, 60, 240, and 1,440 min after injection, with organ uptake quantified by region-of-interest analysis. Tracer kinetics in body fluids were determined by collecting blood and urine samples at different time points. RESULTS: After injection, 99mTc-N-DBODC showed significant accumulation in the myocardium and prolonged retention. Under rest conditions, uptake in the heart, lungs, and liver at 5 min after injection was 1.67% +/- 0.13%, 1.16% +/- 0.07%, and 10.85% +/- 1.72%, respectively, of administered activity. Under stress conditions, heart uptake was significantly higher (2.07% +/- 0.22%). Radioactivity in the liver decreased to 3.64% +/- 0.98% and 2.37% +/- 0.48% at 60 and 240 min, respectively, after injection. This rapid liver clearance led to favorable heart-to-liver ratios, reaching values of 0.74 +/- 0.13 at rest and 1.26 +/- 0.28 during exercise 60 min after tracer administration. Radiation dose estimates were comparable to those obtained with other myocardial perfusion cationic compounds. CONCLUSION: The high uptake in the myocardium and the fast liver washout of 99mTc-N-DBODC will allow SPECT images of the left ventricle to be acquired early and with excellent quality.


Assuntos
Coração/diagnóstico por imagem , Compostos Organofosforados/farmacocinética , Compostos de Organotecnécio/farmacocinética , Doses de Radiação , Compostos Radiofarmacêuticos/farmacocinética , Adulto , Humanos , Masculino , Pessoa de Meia-Idade , Especificidade de Órgãos , Cintilografia , Imagem Corporal Total
19.
Semin Nucl Med ; 38(5): 308-20, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18662553

RESUMO

Basic calculational methods and models used in dose assessment for internal emitters in nuclear medicine are discussed in this overview. Methods for quantification of activity in clinical and preclinical studies also are discussed, and we show how to implement them in currently available dose calculational models. Current practice of the use of internal emitters in therapy also is briefly presented here. Some of the future challenges for dose assessment in nuclear medicine are discussed, including application of patient-specific dose calculational methods and the need for significant advances in radiation biology.


Assuntos
Algoritmos , Carga Corporal (Radioterapia) , Modelos Biológicos , Medicina Nuclear/métodos , Radioisótopos/análise , Radiometria/métodos , Simulação por Computador , Humanos , Eficiência Biológica Relativa
20.
Semin Nucl Med ; 38(5): 335-46, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18662555

RESUMO

In this review, we trace the origins of mathematical modeling methods and pay particular attention to radiotracer applications. Nuclear medicine has been advanced greatly by the efforts of the Society of Nuclear Medicine's Medical Internal Radiation Dose Committee. Well-developed mathematical methods and tools have been created in support of a wide range of applications. Applications of mathematical modeling extend well beyond biology and medicine and are essential to analysis is a wide range of fields that rely on numerical predictions, eg, weather, economic, and various gaming applications. We start with the discovery of radioactivity and radioactive transformations and illustrate selected applications in biology, physiology, and pharmacology. We discuss compartment models as tools used to frame the context of specific problems. A definition of terms, methods, and examples of particular problems follows. We present models of different applications with varying complexity depending on the features of the particular system and function being analyzed. Commonly used analysis tools and methods are described, followed by established models which describe dosimetry along gastrointestinal and urinary excretory pathways, ending finally with a brief discussion of bone marrow dose. We conclude pointing to more recent, promising methods, not yet widely used in dosimetry applications, which aim at coupling pharmacokinetic data with other patient data to correlate patient outcome (benefits and risk) with the type, amount, kind and timing of the therapy the patient received.


Assuntos
Algoritmos , Carga Corporal (Radioterapia) , Modelos Biológicos , Medicina Nuclear/métodos , Radioisótopos/análise , Radiometria/métodos , Simulação por Computador , Humanos , Cinética , Radioisótopos/uso terapêutico , Eficiência Biológica Relativa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa