Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(49): 17528-33, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25422436

RESUMO

Cytoskeletal actin assemblies transmit mechanical stresses that molecular sensors transduce into biochemical signals to trigger cytoskeletal remodeling and other downstream events. How mechanical and biochemical signaling cooperate to orchestrate complex remodeling tasks has not been elucidated. Here, we studied remodeling of contractile actomyosin stress fibers. When fibers spontaneously fractured, they recoiled and disassembled actin synchronously. The disassembly rate was accelerated more than twofold above the resting value, but only when contraction increased the actin density to a threshold value following a time delay. A mathematical model explained this as originating in the increased overlap of actin filaments produced by myosin II-driven contraction. Above a threshold overlap, this mechanical signal is transduced into accelerated disassembly by a mechanism that may sense overlap directly or through associated elastic stresses. This biochemical response lowers the actin density, overlap, and stresses. The model showed that this feedback mechanism, together with rapid stress transmission along the actin bundle, spatiotemporally synchronizes actin disassembly and fiber contraction. Similar actin remodeling kinetics occurred in expanding or contracting intact stress fibers but over much longer timescales. The model accurately described these kinetics, with an almost identical value of the threshold overlap that accelerates disassembly. Finally, we measured resting stress fibers, for which the model predicts constant actin overlap that balances disassembly and assembly. The overlap was indeed regulated, with a value close to that predicted. Our results suggest that coordinated mechanical and biochemical signaling enables extended actomyosin assemblies to adapt dynamically to the mechanical stresses they convey and direct their own remodeling.


Assuntos
Citoesqueleto de Actina/metabolismo , Retroalimentação Fisiológica , Actinina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Elasticidade , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Microscopia , Modelos Teóricos , Contração Muscular , Transdução de Sinais , Fatores de Tempo , Zixina/metabolismo
2.
Biophys J ; 103(6): 1265-74, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22995499

RESUMO

Cells assemble a variety of bundled actomyosin structures in the cytoskeleton for activities such as cell-shape regulation, force production, and cytokinesis. Although these linear structures exhibit varied architecture, two common organizational themes are a punctate distribution of myosin II and distinct patterns of actin polarity. The mechanisms that cells use to assemble and maintain these organizational features are poorly understood. To study these, we reconstituted actomyosin bundles in vitro that contained only actin filaments and myosin II. Upon addition of ATP, the bundles contracted and the uniformly distributed myosin spontaneously reorganized into discrete clusters. We developed a mathematical model in which the motion of myosin II filaments is governed by the polarities of the actin filaments with which they interact. The model showed that the assembly of myosins into clusters is driven by their tendency to migrate to locations with zero net actin filament polarity. With no fitting parameters, the predicted distribution of myosin cluster separations was in close agreement with our experiments, including a -3/2 power law decay for intermediate length scales. Thus, without an organizing template or accessory proteins, a minimal bundle of actin and myosin has the inherent capacity to self-organize into a heterogeneous banded structure.


Assuntos
Actomiosina/metabolismo , Modelos Biológicos , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Trifosfato de Adenosina/farmacologia , Animais , Cinética , Músculo Esquelético/citologia , Miosina Tipo II/química , Coelhos
3.
Biophys J ; 97(2): 462-71, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19619460

RESUMO

Stress fibers are cellular contractile actomyosin machines central to wound healing, shear stress response, and other processes. Contraction mechanisms have been difficult to establish because stress fibers in cultured cells typically exert isometric tension and present little kinetic activity. In a recent study, living cell stress fibers were severed with laser nanoscissors and recoiled several mum over approximately 5 s. We developed a quantitative model of stress fibers based on known components and available structural information suggesting periodic sarcomeric organization similar to striated muscle. The model was applied to the severing assay and compared to the observed recoil. We conclude that the sarcomere force-length relation is similar to that of muscle with two distinct regions on the ascending limb and that substantial external drag forces act on the recoiling fiber corresponding to effective cytosolic viscosity approximately 10(4) times that of water. This may originate from both nonspecific and specific interactions. The model predicts highly nonuniform contraction with caps of collapsed sarcomeres growing at the severed ends. A directly measurable signature of external drag is that cap length and recoil distance increase at intermediate times as t(1/2). The severing data is consistent with this prediction.


Assuntos
Modelos Biológicos , Fibras de Estresse/metabolismo , Adesão Celular , Citosol/química , Citosol/metabolismo , Elasticidade , Cinética , Miosina Tipo II/metabolismo , Sarcômeros/metabolismo , Viscosidade , Água/química
4.
Nat Cell Biol ; 18(1): 33-42, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26619148

RESUMO

Cells test the rigidity of the extracellular matrix by applying forces to it through integrin adhesions. Recent measurements show that these forces are applied by local micrometre-scale contractions, but how contraction force is regulated by rigidity is unknown. Here we performed high temporal- and spatial-resolution tracking of contractile forces by plating cells on sub-micrometre elastomeric pillars. We found that actomyosin-based sarcomere-like contractile units (CUs) simultaneously moved opposing pillars in net steps of ∼2.5 nm, independent of rigidity. What correlated with rigidity was the number of steps taken to reach a force level that activated recruitment of α-actinin to the CUs. When we removed actomyosin restriction by depleting tropomyosin 2.1, we observed larger steps and higher forces that resulted in aberrant rigidity sensing and growth of non-transformed cells on soft matrices. Thus, we conclude that tropomyosin 2.1 acts as a suppressor of growth on soft matrices by supporting proper rigidity sensing.


Assuntos
Actomiosina/metabolismo , Matriz Extracelular/metabolismo , Contração Muscular/fisiologia , Sarcômeros/metabolismo , Estresse Mecânico , Tropomiosina/metabolismo , Citoesqueleto de Actina , Actinas/metabolismo , Adesão Celular , Humanos
5.
Mol Biol Cell ; 27(22): 3471-3479, 2016 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-27122603

RESUMO

During spreading and migration, the leading edges of cells undergo periodic protrusion-retraction cycles. The functional purpose of these cycles is unclear. Here, using submicrometer polydimethylsiloxane pillars as substrates for cell spreading, we show that periodic edge retractions coincide with peak forces produced by local contractile units (CUs) that assemble and disassemble along the cell edge to test matrix rigidity. We find that, whereas actin rearward flow produces a relatively constant force inward, the peak of local contractile forces by CUs scales with rigidity. The cytoskeletal protein α-actinin is shared between these two force-producing systems. It initially localizes to the CUs and subsequently moves inward with the actin flow. Knockdown of α-actinin causes aberrant rigidity sensing, loss of CUs, loss of protrusion-retraction cycles, and, surprisingly, enables the cells to proliferate on soft matrices. We present a model based on these results in which local CUs drive rigidity sensing and adhesion formation.


Assuntos
Actinina/metabolismo , Actinina/fisiologia , Actinas/metabolismo , Animais , Adesão Celular , Técnicas de Cultura de Células , Movimento Celular , Matriz Extracelular/metabolismo , Camundongos , Contração Muscular , Pseudópodes/metabolismo
6.
Dev Cell ; 29(5): 547-561, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24914559

RESUMO

Cytokinesis involves constriction of a contractile actomyosin ring. The mechanisms generating ring tension and setting the constriction rate remain unknown because the organization of the ring is poorly characterized, its tension was rarely measured, and constriction is coupled to other processes. To isolate ring mechanisms, we studied fission yeast protoplasts, in which constriction occurs without the cell wall. Exploiting the absence of cell wall and actin cortex, we measured ring tension and imaged ring organization, which was dynamic and disordered. Computer simulations based on the amounts and biochemical properties of the key proteins showed that they spontaneously self-organize into a tension-generating bundle. Together with rapid component turnover, the self-organization mechanism continuously reassembles and remodels the constricting ring. Ring constriction depended on cell shape, revealing that the ring operates close to conditions of isometric tension. Thus, the fission yeast ring sets its own tension, but other processes set the constriction rate.


Assuntos
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Citocinese/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Simulação por Computador , Miosina Tipo II/metabolismo , Polimerização , Schizosaccharomyces/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa