Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 38(45): 13814-13821, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36326209

RESUMO

A rapid procedure for the functionalization of glassy carbon surfaces (GCSs) is disclosed. A three-step sequence of bromomethylation, azide displacement, and copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) allows ethynylated molecules to be attached covalently to the carbon surface through a methylene functional group. Redox-active ethynyl ferrocene and [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ (DMSO = dimethylsulfoxide; TPA = tris(2-pyridylmethyl)amine) are attached with high coverages as assessed by cyclic voltammetry, and the elemental composition of the surface is confirmed by X-ray photoelectron spectroscopy. In less than 1 h, surface coverages of 1 × 1014 molecules/cm2 are possible that exhibit good durability in both acidic and basic media. Attached [RuII(Cl)(DMSO)(ethynyl-TPA)]1+ catalytically oxidizes alcohols, yet the currents and potentials are less impressive compared to an attachment without the intervening methylene group. The advantages of this covalent attachment procedure for GCSs are its short reaction times, mild reaction conditions, and the use of standard laboratory reagents and glassware, allowing for many types of ethynylated molecules to be attached rapidly to the surface.

2.
Faraday Discuss ; 234(0): 86-108, 2022 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-35156114

RESUMO

Exogenous phenolate ortho-hydroxylation by copper oxidants formed from dioxygen is generally thought to occur through one of two limiting mechanisms defined by the structure of the active oxidant: an electrophilic µ-η2:η2-peroxo-bis-copper(II) species as found in the oxygenated form of the binuclear copper enzyme tyrosinase (oxyTyr), or an isomeric bis(µ-oxido)-bis-copper(III) species (O) with ligated phenolate(s) as evidenced by most synthetic systems. The characterization of the latter is limited due to their limited thermal stability. This study expands the scope of an O species with ligated phenolate(s) using N,N'-di-tert-butyl-1,3-propanediamine (DBPD), a flexible secondary diamine ligand. Oxygenation of the [(DBPD)Cu(I)]1+ complex at low temperatures (e.g., 153 K) forms a spectroscopically and structurally faithful model to oxyTyr, a side-on peroxide intermediate, which reacts with added phenolates to form a bis(µ-oxido)-bis-copper(III) species with ligated phenolates, designated as an A species. The proposed stoichiometry of A is best understood as possessing 2 rather than 1 bonded phenolate. Thermal decomposition of A results in regiospecific phenolate ortho-hydroxylation with the ortho-substituent as either a C-H or C-X (Cl, Br) group, though the halogen displacement is significantly slower. DFT and experimental studies support an electrophilic attack of an oxide ligand into the π-system of a ligated phenolate. This study supports a hydroxylation mechanism in which O-O bond cleavage of the initially formed peroxide by phenolate ligation, which precedes phenolate aromatic hydroxylation.


Assuntos
Cobre , Compostos Organometálicos , Cobre/química , Hidroxilação , Ligantes , Estrutura Molecular , Compostos Organometálicos/química , Oxigênio/química , Peróxidos , Fenóis/química
3.
Inorganica Chim Acta ; 486: 782-792, 2019 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31485082

RESUMO

Cu(III)2(µ-O)2 bis-oxides (O) form spontaneously by direct oxygenation of nitrogen-chelated Cu(I) species and constitute a diverse class of versatile 2e-/2H+ oxidants, but while these species have attracted attention as biomimetic models for dinuclear Cu enzymes, reactivity is typically limited to intramolecular ligand oxidation, and systems exhibiting synthetically useful reactivity with exogenous substrates are limited. O tmpd (TMPD = N 1 , N 1 , N 3 , N 3 -tetramethylpropane-1,3-diamine) presents an exception, readily oxidizing a diverse array of exogenous substrates, including primary alcohols and amines selectively over their secondary counterparts in good yields. Mechanistic and DFT analyses suggest substrate oxidation proceeds through initial axial coordination, followed by rate limiting rotation to position the substrate in the Cu(III) equatorial plane, whereupon rapid deprotonation and oxidation by net hydride transfer occurs. Together, the results suggest the selectivity and broad substrate scope unique to O tmpd are best attributed to the combination of ligand flexibility, limited steric demands, and ligand oxidative stability. In keeping with the absence of rate limiting C-H scission, O tmpd exhibits a marked insensitivity to the strength of the substrate Cα-H bond, readily oxidizing benzyl alcohol and 1 octanol at near identical rates.

4.
Inorganica Chim Acta ; 481: 151-158, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30581226

RESUMO

The tetradentate mixed imino/amino phenoxide ligand (N-(3,5-di-tert-butylsalicylidene)-N'-(2-hydroxyl-3,5-di-tert-butylbenzyl))-trans-1,2-cyclohexanediamine (salalen) was complexed with CuII, and the resulting Cu complex (2) was characterized by a number of experimental techniques and theoretical calculations. Two quasi-reversible redox processes for 2, as observed by cyclic voltammetry, demonstrated the potential stability of oxidized forms, and also the increased electron-donating ability of the salalen ligand in comparison to the salen analogue. The electronic structure of the one-electron oxidized [2]+ was then studied in detail, and Cu K-edge X-ray Absorption Spectroscopy (XAS) measurements confirmed a CuII-phenoxyl radical complex in solution. Subsequent resonance Raman (rR) and variable temperature 1H NMR studies, coupled with theoretical calculations, showed that [2• ]+ is a triplet (S = 1) CuII-phenoxyl radical species, with localization of the radical on the more electron-rich aminophenoxide. Attempted isolation of X-ray quality crystals of [2• ]+ afforded [2H]+, with a protonated phenol bonded to CuII, and an additional H-bonding interaction with the SbF6 - counterion. Stoichiometric reaction of dilute solutions of [2• ]+ with benzyl alcohol showed that the complex reacted in a similar manner as the oxidized CuII-salen analogue, and does not exhibit a substrate-binding pre-equilibrium as observed for the oxidized bisaminophenoxide CuII-salan derivative.

5.
J Biol Inorg Chem ; 22(2-3): 289-305, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27909921

RESUMO

A long-standing debate in the Cu-O2 field has revolved around the relevance of the Cu(III) oxidation state in biological redox processes. The proposal of Cu(III) in biology is generally challenged as no spectroscopic or structural evidence exists currently for its presence. The reaction of synthetic Cu(I) complexes with O2 at low temperature in aprotic solvents provides the opportunity to investigate and define the chemical landscape of Cu-O2 species at a small-molecule level of detail; eight different types are characterized structurally, three of which contain at least one Cu(III) center. Simple imidazole or histamine ligands are competent in these oxygenation reactions to form Cu(III) complexes. The combination of synthetic structural and reactivity data suggests (1) that Cu(I) should be considered as either a one or two electron reductant reacting with O2, (2) that Cu(III) reduction potentials of these formed complexes are modest and well within the limits of a protein matrix and (3) that primary amine and imidazole ligands are surprisingly good at stabilizing Cu(III) centers. These Cu(III) complexes are efficient oxidants for hydroxylating phenolate substrates with reaction hallmarks similar to that performed in biological systems. The remarkable ligation similarity of the synthetic and biological systems makes it difficult to continue to exclude Cu(III) from biological discussions.


Assuntos
Biomimética/métodos , Cobre/metabolismo , Oxirredução , Oxirredutases/metabolismo , Oxigenases/metabolismo
6.
J Am Chem Soc ; 138(31): 9986-95, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27467215

RESUMO

Histamine chelation of copper(I) by a terminal histidine residue in copper hydroxylating enzymes activates dioxygen to form unknown oxidants, generally assumed as copper(II) species. The direct formation of copper(III)-containing products from the oxygenation of histamine-ligated copper(I) complexes is demonstrated here, indicating that copper(III) is a viable oxidation state in such products from both kinetic and thermodynamic perspectives. At low temperatures, both trinuclear Cu(II)2Cu(III)O2 and dinuclear Cu(III)2O2 predominate, with the distribution dependent on the histamine ligand structure and oxygenation conditions. Kinetics studies suggest the bifurcation point to these two products is an unobserved peroxide-level dimer intermediate. The hydrogen atom reactivity difference between the trinuclear and binuclear complexes at parity of histamine ligand is striking. This behavior is best attributed to the accessibility of the bridging oxide ligands to exogenous substrates rather than a difference in oxidizing abilities of the clusters.


Assuntos
Quelantes/química , Cobre/química , Histamina/química , Oxigênio/química , Aminas/química , Cinética , Ligantes , Espectrometria de Massas , Modelos Moleculares , Estrutura Molecular , Oxirredução , Óxidos/química , Temperatura , Termodinâmica
7.
Acc Chem Res ; 48(8): 2424-33, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26230113

RESUMO

Nature's facility with dioxygen outmatches modern chemistry in the oxidation and oxygenation of materials and substrates for biosynthesis and cellular metabolism. The Earth's most abundant naturally occurring oxidant is-frankly-poorly understood and controlled, and thus underused. Copper-based enzyme metallocofactors are ubiquitous to the efficient consumption of dioxygen by all domains of life. Over the last several decades, we have joined many research groups in the study of copper- and dioxygen-dependent enzymes through close investigation of synthetically derived, small-molecule active-site analogs. Simple copper-dioxygen clusters bearing structural and spectroscopic similarity to dioxygen-activating enzymes can be probed for their fundamental geometrical, electronic, and reactive properties using the tools available to inorganic and synthetic chemistry. Our exploration of the copper-dioxygen arena has sustained product evaluation of the key dynamics and reactivity of binuclear Cu2O2 compounds. Almost exclusively operating at low temperatures, from -78 °C to solution characterization even at -125 °C, we have identified numerous compounds supported by simple and easily accessed, low molecular weight ligands-chiefly families of bidentate diamine chelates. We have found that by stripping away complexity in comparison to extended protein tertiary structures or sophisticated, multinucleating architectures, we can experimentally manipulate activated compounds and open pathways of reactivity toward exogenous substrates that both inform on and extend fundamental mechanisms of oxygenase enzymes. Our recent successes have advanced understanding of the tyrosinase enzyme, and related hemocyanin and NspF, and the copper membrane monooxygenases, specifically particulate methane monooxygenase (pMMO) and ammonia monooxygenase (AMO). Tyrosinase, ubiquitously distributed throughout life, is fundamental to the copper-based oxidation of phenols and the production of chromophores by dedicated biosynthesis or incidental oxidative browning. The copper membrane monooxygenases are comparatively new entrants to the copper-dioxygen field. While pMMO mediates the synthetically tantalizing transformation of methane to methanol, AMO catalyzes the first metabolic step in deriving chemical energy from ammonia-a reaction massively represented on a global scale and a critical component of chemical homeostasis on Earth. In this Account, we begin by introduction of the synthetic copper-dioxygen chemistry field, from techniques to the differential coordination of dioxygen with copper. Then, we describe the unambiguous self-assembly of an oxygenated tyrosinase mimic from basic constituents (copper, dioxygen, and monodentate-imidazole histidine analogs) and the resulting emergence of intrinsic reactivity, free of any influence due to the protein environment. Next, we discuss the first catalytic oxidation of phenol through a fully characterized tyrosinase mimic, derived from molecular oxygen, and its application to substrates unreactive in the native enzyme system. Finally, we detail evidence for chemical plausibility of dioxygen activation in pMMO (and AMO) through a high-valent species and the thermodynamic criteria that beg introduction of the Cu(III) state to biological redox catalysis.

8.
Angew Chem Int Ed Engl ; 55(35): 10453-7, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27440390

RESUMO

Tyrosinases are ubiquitous binuclear copper enzymes that oxygenate to Cu(II) 2 O2 cores bonded by three histidine Nτ-imidazoles per Cu center. Synthetic monodentate imidazole-bonded Cu(II) 2 O2 species self-assemble in a near quantitative manner at -125 °C, but Nπ-ligation has been required. Herein, we disclose the syntheses and reactivity of three Nτ-imidazole bonded Cu(II) 2 O2 species at solution temperatures of -145 °C, which was achieved using a eutectic mixture of THF and 2-MeTHF. The addition of anionic phenolates affords a Cu(III) 2 O2 species, where the bonded phenolates hydroxylate to catecholates in high yields. Similar Cu(III) 2 O2 intermediates are not observed using Nπ-bonded Cu(II) 2 O2 species, hinting that Nτ-imidazole ligation, conserved in all characterized Ty, has functional advantage beyond active-site flexibility. Substrate accessibility to the oxygenated Cu2 O2 core and stabilization of a high oxidation state of the copper centers are suggested from these minimalistic models.


Assuntos
Complexos de Coordenação/metabolismo , Cobre/metabolismo , Imidazóis/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Fenóis/metabolismo , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Hidroxilação , Imidazóis/química , Conformação Molecular , Monofenol Mono-Oxigenase/química , Fenóis/química , Teoria Quântica
9.
J Am Chem Soc ; 137(22): 6991-4, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26020834

RESUMO

The mechanisms of dioxygen activation and methane C-H oxidation in particulate methane monooxygenase (pMMO) are currently unknown. Recent studies support a binuclear copper site as the catalytic center. We report the low-temperature assembly of a high-valent dicopper(III) bis(µ-oxide) complex bearing marked structural fidelity to the proposed active site of pMMO. This unprecedented dioxygen-bonded Cu(III) species with exclusive biological ligation directly informs on the chemical plausibility and thermodynamic stability of the bis(µ-oxide) structure in such dicopper sites and foretells unusual optical signatures of an oxygenation product in pMMO. Though the ultimate pMMO active oxidant is still debated, C-H oxidation of exogenous substrates is observed with the reported Cu(III) complexes. The assembly of a high valent species both narrows the search for relevant pMMO intermediates and provides evidence to substantiate the role of Cu(III) in biological redox processes.


Assuntos
Cobre/metabolismo , Oxigenases/metabolismo , Cobre/química , Oxigenases/química , Termodinâmica
10.
Phys Chem Chem Phys ; 17(9): 6565-71, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25662612

RESUMO

Energy relay dyes (ERDs) have been investigated previously as a mean to achieve panchromatic spectral response in dye-sensitized solar cells via energy transfer. To reduced the distance between the ERDs and energy-accepting injection dyes (IDs) on the surface of a mesoporous titanium dioxide electrode, the ERDs were immobilized adjacent to the IDs via a sequential functionalization approach. In the first step, azidobenzoic acid molecules were co-adsorbed on the mesoporous titanium dioxide surface with the ID. In the second step, the highly selective copper(I)-catalyzed 1,3-dipolar azide-alkyne cycloaddition "click" reaction was employed to couple an alkyne-functionalized ERD to the azidobenzoic acid monolayer. The cycloaddition step in the mesoporous electrode was slowed dramatically due to reactants and catalysts forming agglomerates. In solar cell devices, the close proximity between the surface-immobilized ERD and energy-accepting squaraine sensitizer dyes results in energy transfer efficiencies of up to 91%. The relative improvement in device performance due to the additional ERD spectral response was 124%, which is among the highest reported. The sequential functionalization approach described herein is transferrable to other applications requiring the functionalization of electrodes with complex molecules.

11.
Eur J Inorg Chem ; 2015(32): 5426-5436, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27990098

RESUMO

A series of new hybrid peralkylated-amine-guanidine ligands based on a 1,3-propanediamine backbone and their Cu-O2 chemistry is reported. The copper(I) complexes react readily with O2 at low temperatures in aprotic solvents with weakly coordinating anions to form exclusively bis(µ-oxo) dicopper species (O). Variation of the substituents on each side of the hybrid bidentate ligand highlights that less sterically demanding amine and guanidine substituents increase not only the thermal stability of the formed O cores but enhance inner-sphere phenolate hydroxylation pathways. TD-DFT analysis on selected guanidine-amine O species suggest that the additional visible feature observed is a guanidine π*→ Cu2O2 LMCT, which appears along with the classic oxo-ζu*→Cu(III) and πζ*→ Cu(III) LMCT transitions.

12.
J Am Chem Soc ; 136(41): 14405-8, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25268334

RESUMO

Here we report the formation of the first examples of dicopper(III) bis(µ-oxo) complexes ligated by the primary amines, propylenediamine, and N,N,-dimethyl propylenediamine. Stabilization of these new compounds is effected at -125 °C by "core capture"- introduction of exogenous ligand to a preformed dicopper(III) bis(µ-oxo) complex supported by the peralkylated tetramethyl propylenediamine. Primary amine ligation in these compounds matches the single primary amine coordination of the putative active site of particulate methane monooxygenase (pMMO) and polysaccharide monooxygenase. Reactivity studies presented here show primary amine ligated cores are competent oxidants, capable of activating C-H bonds by an H-atom abstraction mechanism. Trends in spectroscopy, structure, and reactivity provide hints to the potential role of primary amine ligation in pMMO: increased substrate accessibility to the redox active orbitals of the Cu2O2 core and greater stabilization of the oxidant without attenuation of oxidizing power.


Assuntos
Aminas/química , Cobre/química , Compostos Organometálicos/química , Oxigenases/química , Aminas/metabolismo , Cobre/metabolismo , Ligantes , Modelos Moleculares , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Oxigenases/metabolismo , Teoria Quântica
13.
Proc Natl Acad Sci U S A ; 108(46): 18600-5, 2011 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22065750

RESUMO

Integrating sulfanyl substituents into copper-bonded phenoxyls significantly alters their optical and redox properties and provides insight into the influence of cysteine modification of the tyrosine cofactor in the enzyme galactose oxidase. The model complexes [1(SR2)](+) are class II mixed-valent Cu(II)-phenoxyl-phenolate species that exhibit intervalence charge transfer bands and intense visible sulfur-aryl π → π* transitions in the energy range, which provides a greater spectroscopic fidelity to oxidized galactose oxidase than non-sulfur-bearing analogs. The potentials for phenolate-based oxidations of the sulfanyl-substituted 1(SR2) are lower than the alkyl-substituted analogs by up to ca. 150 mV and decrease following the steric trend: -S(t)Bu > -S(i) Pr > -SMe. Density functional theory calculations suggest that reducing the steric demands of the sulfanyl substituent accommodates an in-plane conformation of the alkylsulfanyl group with the aromatic ring, which stabilizes the phenoxyl hole by ca. 8 kcal mol(-1) (1 kcal = 4.18 kJ; 350 mV) through delocalization onto the sulfur atom. Sulfur K-edge X-ray absorption spectroscopy clearly indicates a contribution of ca. 8-13% to the hole from the sulfur atoms in [1(SR2)](+). The electrochemical results for the model complexes corroborate the ca. 350 mV (density functional theory) contribution of hole delocalization on to the cysteine-tyrosine cross-link to the stability of the phenoxyl radical in the enzyme, while highlighting the importance of the in-plane conformation observed in all crystal structures of the enzyme.


Assuntos
Química/métodos , Cobre/química , Galactose Oxidase/química , Fenóis/química , Enxofre/química , Domínio Catalítico , Eletroquímica/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Químicos , Oxirredução , Oxigênio/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Temperatura , Raios Ultravioleta
14.
J Am Chem Soc ; 135(3): 1110-6, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23301920

RESUMO

Tailoring the surface and interfacial properties of inexpensive and abundant carbon materials plays an increasingly important role for innovative applications including those in electrocatalysis, energy storage, gas separations, and composite materials. Described here is the novel preparation and subsequent use of gaseous iodine azide for the azide modification of carbon surfaces. In-line generation of gaseous iodine azide from iodine monochloride vapor and solid sodium azide is safe and convenient. Immediate treatment of carbon surfaces with this gaseous stream of iodine azide provides a highly reproducible, selective, and scalable azide functionalization that minimizes waste and reduces deleterious side reactions. Among the possible uses of azide-modified surfaces, they serve as versatile substrates for the attachment of additional functionality by coupling with terminal alkynes under the mild copper-catalyzed azide-alkyne cycloaddition (CuAAC) "click" reaction. For instance, coupling ethynylferrocene to azide-modified glassy carbon surfaces achieves ferrocene coverage up to 8 × 10(13) molecules/cm(2) by voltammetric and XPS analyses. The 1,2,3-triazole linker formed during the CuAAC reaction is robust and hydrolytically stable in both aqueous 1 M HClO(4) and 1 M NaOH for at least 12 h at 100 °C.


Assuntos
Azidas/química , Carbono/química , Gases/química , Propriedades de Superfície
15.
J Am Chem Soc ; 135(50): 18912-9, 2013 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-24279864

RESUMO

Copper thiolate/disulfide interconversions are related to the functions of several important proteins such as human Sco1, Cu-Zn superoxide dismutase (SOD1), and mammalian zinc-bonded metallothionein. The synthesis and characterization of well-defined synthetic analogues for such interconversions are challenging yet provide important insights into the mechanisms of such redox processes. Solvent-dependent redox isomerization and proton-coupled electron transfer mimicking these interconversions are observed in two structurally related dimeric µ,η(2):η(2)-thiolato Cu(II)Cu(II) complexes by various methods, including X-ray diffraction, XAS, NMR, and UV-vis. Spectroscopic evidence shows that a solvent-dependent equilibrium exists between the dimeric µ-thiolato Cu(II)Cu(II) state and its redox isomeric µ-disulfido Cu(I)Cu(I) form. Complete formation of µ-disulfido Cu(I)Cu(I) complexes, however, only occurs after the addition of 2 equiv of protons, which promote electron transfer from thiolate to Cu(II) and formation of disulfide and Cu(I) via protonation of the coordinating ligand. Proton removal reverses this reaction. The reported unusual reductive protonation/oxidative deprotonation of the metal centers may serve as a new chemical precedent for how related proteins manage Cu ions in living organisms.


Assuntos
Cobre/química , Dissulfetos/química , Elétrons , Prótons , Compostos de Sulfidrila/química , Isomerismo , Ligantes , Modelos Moleculares , Oxirredução , Solventes/química
16.
J Am Chem Soc ; 135(46): 17417-31, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24102191

RESUMO

The hydroxylation of aromatic substrates catalyzed by coupled binuclear copper enzymes has been observed with side-on-peroxo-dicopper(II) (P) and bis-µ-oxo-dicopper(III) (O) model complexes. The substrate-bound-O intermediate in [Cu(II)2(DBED)2(O)2](2+) (DBED = N,N'-di-tert-butyl-ethylenediamine) was shown to perform aromatic hydroxylation. For the [Cu(II)2(NO2-XYL)(O2)](2+) complex, only a P species was spectroscopically observed. However, it was not clear whether this O-O bond cleaves to proceed through an O-type structure along the reaction coordinate for hydroxylation of the aromatic xylyl linker. Accurate evaluation of these reaction coordinates requires reasonable quantitative descriptions of the electronic structures of the P and O species. We have performed Cu L-edge XAS on two well-characterized P and O species to experimentally quantify the Cu 3d character in their ground state wave functions. The lower per-hole Cu character (40 ± 6%) corresponding to higher covalency in the O species compared to the P species (52 ± 4%) reflects a stronger bonding interaction of the bis-µ-oxo core with the Cu(III) centers. DFT calculations show that 10-20% Hartree-Fock (HF) mixing for P and ~38% for O species are required to reproduce the Cu-O bonding; for the P species this HF mixing is also required for an antiferromagnetically coupled description of the two Cu(II) centers. B3LYP (with 20% HF) was, therefore, used to calculate the hydroxylation reaction coordinate of P in [Cu(II)2(NO2-XYL)(O2)](2+). These experimentally calibrated calculations indicate that the electrophilic attack on the aromatic ring does not involve formation of a Cu(III)2(O(2-))2 species. Rather, there is direct electron donation from the aromatic ring into the peroxo σ* orbital of the Cu(II)2(O2(2-)) species, leading to concerted C-O bond formation with O-O bond cleavage. Thus, species P is capable of direct hydroxylation of aromatic substrates without the intermediacy of an O-type species.


Assuntos
Cobre/química , Compostos Organometálicos/química , Teoria Quântica , Estrutura Molecular , Compostos Organometálicos/síntese química , Espectroscopia por Absorção de Raios X
17.
Coord Chem Rev ; 257(2): 528-540, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23264696

RESUMO

The interplay between redox-active transition metal ions and redox-active ligands in metalloenzyme sites is an area of considerable research interest. Galactose oxidase (GO) is the archetypical example, catalyzing the aerobic oxidation of primary alcohols to aldehydes via two one-electron cofactors: a copper atom and a cysteine-modified tyrosine residue. The electronic structure of the oxidized form of the enzyme (GO(ox)) has been investigated extensively through small molecule analogues including metal-salen phenoxyl radical complexes. Similar to GO(ox), one-electron oxidized metal-salen complexes are mixed-valent species, in which molecular orbitals (MOs) with predominantly phenolate and phenoxyl π-character act as redox-active centers bridged by mixing with metal d-orbitals. A detailed evaluation of the electronic distribution in these odd electron species using a variety of spectroscopic, electrochemical, and theoretical techniques has led to keen insights into the electronic structure of GO(ox).

18.
Langmuir ; 29(18): 5383-7, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23551032

RESUMO

A terminal alkyne is immobilized rapidly into a full monolayer by squishing a small volume of a solution of the alkyne between an azide-modified surface and a copper plate. The monolayer is covalently attached to the surface through a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction, and the coverages of the immobilized electroactive alkyne species are quantified by cyclic voltammetry. A reaction time of less than 20 s is possible with no other reagents required. The procedure is effective under aerobic conditions using either an aqueous or aprotic organic solution of the alkyne (1-100 mM).


Assuntos
Alcinos/química , Azidas/química , Cobre/química , Catálise , Ciclização , Oxirredução , Fatores de Tempo
19.
J Am Chem Soc ; 134(5): 2750-9, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22277027

RESUMO

Azidopropyl functionalized mesoporous silica SBA-15 were prepared with variable azide loadings of 0.03-0.7 mmol g(-1) (~2-50% of maximal surface coverage) through a direct synthesis, co-condensation approach. These materials are functionalized selectively with ethynylated organic moieties through a copper-catalyzed azide alkyne cycloaddition (CuAAC) or "click" reaction. Specific loading within a material can be regulated by either the azide loading or limiting the alkyne reagent relative to the azide loading. The immobilization of ferrocene, pyrene, tris(pyridylmethyl)amine (TPA), and iron porphyrin (FeTPP) demonstrates the robust nature and reproducibility of this two-step synthetic attachment strategy. Loading-sensitive pyrene fluorescence correlates with a theoretically random surface distribution, rather than a uniform one; site-isolation of tethered moieties ~15 Å in length occurs at loadings less than 0.02 mmol g(-1). The effect of surface loading on reactivity is observed in the oxygenation of SBA-15-[Cu(I)(TPA)]. SBA-15-[Mn(II)(TPA)]-catalyzed epoxidation exhibits a systematic dependence on surface loading. A comparison of homogeneous, site-isolated and site-dense complexes provides insight into catalyst speciation and ligand activity.


Assuntos
Dióxido de Silício/química , Alcinos/química , Azidas/química , Catálise , Química Click , Cobre/química , Ciclização , Estrutura Molecular , Dióxido de Silício/síntese química , Propriedades de Superfície
20.
J Am Chem Soc ; 134(17): 7367-77, 2012 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-22471355

RESUMO

Nonsymmetric substitution of salen (1(R(1),R(2))) and reduced salen (2(R(1),R(2))) Cu(II)-phenoxyl complexes with a combination of -(t)Bu, -S(i)Pr, and -OMe substituents leads to dramatic differences in their redox and spectroscopic properties, providing insight into the influence of the cysteine-modified tyrosine cofactor in the enzyme galactose oxidase (GO). Using a modified Marcus-Hush analysis, the oxidized copper complexes are characterized as Class II mixed-valent due to the electronic differentiation between the two substituted phenolates. Sulfur K-edge X-ray absorption spectroscopy (XAS) assesses the degree of radical delocalization onto the single sulfur atom of nonsymmetric [1((t)Bu,SMe)](+) at 7%, consistent with other spectroscopic and electrochemical results that suggest preferential oxidation of the -SMe bearing phenolate. Estimates of the thermodynamic free-energy difference between the two localized states (ΔG(o)) and reorganizational energies (λ(R(1)R(2))) of [1(R(1),R(2))](+) and [2(R(1),R(2))](+) lead to accurate predictions of the spectroscopically observed IVCT transition energies. Application of the modified Marcus-Hush analysis to GO using parameters determined for [2(R(1),R(2))](+) predicts a ν(max) of ∼13600 cm(-1), well within the energy range of the broad Vis-NIR band displayed by the enzyme.


Assuntos
Cobre/química , Etilenodiaminas/química , Galactose Oxidase/química , Fenóis/química , Complexos de Coordenação/química , Espectroscopia de Ressonância de Spin Eletrônica , Oxirredução , Espectrofotometria , Enxofre/química , Termodinâmica , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa