Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Acoust Soc Am ; 139(4): 1578, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27106306

RESUMO

Temporal pitch perception in cochlear implantees remains weaker than in normal hearing listeners and is usually limited to rates below about 300 pulses per second (pps). Recent studies have suggested that stimulating the apical part of the cochlea may improve the temporal coding of pitch by cochlear implants (CIs), compared to stimulating other sites. The present study focuses on rate discrimination at low pulse rates (ranging from 20 to 104 pps). Two experiments measured and compared pulse rate difference limens (DLs) at four fundamental frequencies (ranging from 20 to 104 Hz) in both CI and normal-hearing (NH) listeners. Experiment 1 measured DLs in users of the (Med-El CI, Innsbruck, Austria) device for two electrodes (one apical and one basal). In experiment 2, DLs for NH listeners were compared for unresolved harmonic complex tones filtered in two frequency regions (lower cut-off frequencies of 1200 and 3600 Hz, respectively) and for different bandwidths. Pulse rate discrimination performance was significantly better when stimulation was provided by the apical electrode in CI users and by the lower-frequency tone complexes in NH listeners. This set of data appears consistent with better temporal coding when stimulation originates from apical regions of the cochlea.


Assuntos
Cóclea/inervação , Implante Coclear/instrumentação , Implantes Cocleares , Pessoas com Deficiência Auditiva/reabilitação , Discriminação da Altura Tonal , Estimulação Acústica/métodos , Adulto , Idoso , Estudos de Casos e Controles , Implante Coclear/métodos , Discriminação Psicológica , Estimulação Elétrica , Feminino , Humanos , Percepção Sonora , Masculino , Pessoa de Meia-Idade , Pessoas com Deficiência Auditiva/psicologia , Fatores de Tempo
2.
Brain Sci ; 13(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36831793

RESUMO

In all commercial cochlear implant (CI) devices, the activation of auditory nerve fibers is performed with rectangular pulses that have two phases of opposite polarity. Recently, several papers proposed that ramped pulse shapes could be an alternative shape for efficiently activating auditory nerve fibers. Here, we investigate whether ramped pulse shapes can activate auditory cortex (ACx) neurons in a more efficient way than the classical rectangular pulses. Guinea pigs were implanted with CI devices and responses of ACx neurons were tested with rectangular pulses and with four ramped pulse shapes, with a first-phase being either cathodic or anodic. The thresholds, i.e., the charge level necessary for obtaining significant cortical responses, were almost systematically lower with ramped pulses than with rectangular pulses. The maximal firing rate (FR) elicited by the ramped pulses was higher than with rectangular pulses. As the maximal FR occurred with lower charge levels, the dynamic range (between threshold and the maximal FR) was not modified. These effects were obtained with cathodic and anodic ramped pulses. By reducing the charge levels required to activate ACx neurons, the ramped pulse shapes should reduce charge consumption and should contribute to more battery-efficient CI devices in the future.

3.
Brain Sci ; 12(2)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35203968

RESUMO

The cochlear implant (CI) is the most successful neuroprosthesis allowing thousands of patients with profound hearing loss to recover speech understanding. Recently, cochlear implants have been proposed to subjects with residual hearing and, in these cases, shorter CIs were implanted. To be successful, it is crucial to preserve the patient's remaining hearing abilities after the implantation. Here, we quantified the effects of CI insertion on the responses of auditory cortex neurons in anesthetized guinea pigs. The responses of auditory cortex neurons were determined before and after the insertion of a 300 µm diameter CI (six stimulating electrodes, length 6 mm). Immediately after CI insertion there was a 5 to 15 dB increase in the threshold for cortical neurons from the middle to the high frequencies, accompanied by a decrease in the evoked firing rate. Analyzing the characteristic frequency (CF) values revealed that in large number of cases, the CFs obtained after insertion were lower than before. These effects were not detected in the control animals. These results indicate that there is a small but immediate cortical hearing loss after CI insertion, even with short length CIs. Therefore, efforts should be made to minimize the damages during CI insertion to preserve the cortical responses to acoustic stimuli.

4.
PLoS One ; 17(10): e0275961, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36315506

RESUMO

Oticon Medical cochlear implants use a stimulation mode called Distributed All-Polar (DAP) that connects all non-stimulating available intracochlear electrodes and an extracochlear reference electrode. It results in a complex distribution of current that is yet undescribed. The present study aims at providing a first characterization of this current distribution. A Neuro Zti was modified to allow the measurement of current returning to each electrode during a DAP stimulation and was implanted in an ex-vivo human head. Maps of distributed current were then created for different stimulation conditions with different charge levels. Results show that, on average, about 20% of current returns to the extracochlear reference electrode, while the remaining 80% is distributed between intracochlear electrodes. The position of the stimulating electrode changed this ratio, and about 10% more current to the extracochlear return in case of the first 3 basal electrodes than for apical and mid position electrodes was observed. Increasing the charge level led to small but significant change in the ratio, and about 4% more current to the extracochlear return was measured when increasing the charge level from 11.7 to 70 nC. Further research is needed to show if DAP yields better speech understanding than other stimulation modes.


Assuntos
Implante Coclear , Implantes Cocleares , Humanos , Fala , Estimulação Elétrica
5.
Hear Res ; 403: 108176, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33524792

RESUMO

While electrically-evoked auditory brainstem response (eABR) thresholds for low-rate pulse trains correlate well with behavioral thresholds measured at the same rate, the correlation is much weaker with behavioral thresholds measured at high rates, such as used clinically. This implies that eABRs to low-rate stimuli cannot be reliably used for objective programming of threshold levels in cochlear implant (CI) users. Here, we investigate whether the use of bunched-up pulses (BUPS), consisting of groups of closely-spaced pulses may be used as an alternative stimulus. Experiment 1 measured psychophysical detection thresholds for several stimuli having a period of 32 ms in nine CI subjects implanted with a Med-EL device. The stimuli differed in the number of pulses present in each period (from 1 to 32), the pulse rate within period (1000 pps and as high as possible for BUPS) and the electrode location (apical or basal). The correlation between psychophysical thresholds obtained for a high-rate (1000 pps) clinical stimulus and for the BUPS stimuli increased as the number of pulses per period of BUPS increased from 1 to 32. This first psychophysical experiment suggests that the temporal processes affecting the threshold of clinical stimuli are also present for BUPS. Experiment 2 measured eABRs on the apical electrode of eight CI subjects for BUPS having 1, 2, 4, 8, 16 or 32 pulses per period. For most subjects, wave V was visible for BUPS having up to 16 pulses per period. The latency of wave V at threshold increased as a function of the number of pulses per period, suggesting that the eABR reflects the integration of multiple pulses at such low levels or that the neural response to each individual pulse increases along the sequence due to facilitation processes. There was also a strong within-subject correlation between electrophysiological and behavioral thresholds for the different BUPS stimuli. This demonstrates that the drop in behavioral threshold obtained when increasing the number of pulses per period of the BUPS can be measured electrophysiologically using eABRs. In contrast, the across-subject correlation between eABR thresholds for BUPS and clinical thresholds remained relatively weak and did not increase with the number of pulses per period. Implications of the use of BUPS for objective programming of CIs are discussed.


Assuntos
Implante Coclear , Implantes Cocleares , Limiar Auditivo , Estimulação Elétrica , Potenciais Evocados Auditivos do Tronco Encefálico , Frequência Cardíaca , Humanos
6.
Hear Res ; 396: 108070, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32950954

RESUMO

Conventional loudness coding with CIs by pulse current amplitude has a disadvantage: Increasing the stimulation current increases the spread of excitation in the auditory nerve, resulting in stronger channel interactions at high stimulation levels. These limit the number of effective information channels that a CI user can perceive. Stimulus intensity information (loudness) can alternatively be transmitted via pulse phase duration. We hypothesized that loudness coding by phase duration avoids the increase in the spread of the electric field and thus leads to less channel interactions at high stimulation levels. To avoid polarity effects, we combined this coding with pseudomonophasic stimuli. To test whether this affects the spread of excitation, 16 acutely deafened guinea pigs were implanted with CIs and neural activity from the inferior colliculus was recorded while stimulating with either biphasic, amplitude-coded pulses, or pseudomonophasic, duration- or amplitude-coded pulses. Pseudomonophasic stimuli combined with phase duration loudness coding reduced the lowest response thresholds and the spread of excitation. We investigated the channel interactions at suprathreshold levels by computing the phase-locking to a pulse train in the presence of an interacting pulse train on a different electrode on the CI. Pseudomonophasic pulses coupled with phase duration loudness coding reduced the interference by 4-5% compared to biphasic pulses, depending on the place of stimulation. This effect of pseudomonophasic stimuli was achieved with amplitude coding only in the basal cochlea, indicating a distance- or volume dependent effect. Our results show that pseudomonophasic, phase-duration-coded stimuli slightly reduce channel interactions, suggesting a potential benefit for speech understanding in humans.


Assuntos
Implante Coclear , Implantes Cocleares , Animais , Nervo Coclear , Estimulação Elétrica , Cobaias , Colículos Inferiores
7.
PLoS One ; 13(8): e0201771, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30071005

RESUMO

Despite remarkable advances made to ameliorate how cochlear implants process the acoustic environment, many improvements can still be made. One of most fundamental questions concerns a strategy to simulate an increase in sound intensity. Psychoacoustic studies indicated that acting on either the current, or the duration of the stimulating pulses leads to perception of changes in how loud the sound is. The present study compared the growth function of electrically evoked Compound Action Potentials (eCAP) of the 8th nerve using these two strategies to increase electrical charges (and potentially to increase the sound intensity). Both with chronically (experiment 1) or acutely (experiment 2) implanted guinea pigs, only a few differences were observed between the mean eCAP amplitude growth functions obtained with the two strategies. However, both in chronic and acute experiments, many animals showed larger increases of eCAP amplitude with current increase, whereas some animals showed larger of eCAP amplitude with duration increase, and other animals show no difference between either approaches. This indicates that the parameters allowing the largest increase in eCAP amplitude considerably differ between subjects. In addition, there was a significant correlation between the strength of neuronal firing rate in auditory cortex and the effect of these two strategies on the eCAP amplitude. This suggests that pre-selecting only one strategy for recruiting auditory nerve fibers in a given subject might not be appropriate for all human subjects.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados , Nervo Vestibulococlear/fisiologia , Animais , Variação Biológica Individual , Implantes Cocleares , Feminino , Cobaias , Masculino , Neurônios/fisiologia , Fatores de Tempo
8.
IEEE Trans Neural Syst Rehabil Eng ; 25(12): 2453-2460, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28692981

RESUMO

Auditory evoked potentials are of great interest to objectively evaluate the audition in cochlear implant (CI) recipients. However, these measures are impeded by CI stimulation electrical artifacts present in the EEG. In the first part, this paper investigates the use of a hybrid model approximating CI patient data. This model gives access to both uncontaminated and denoised data, thus allowing for the evaluation of CI artifact removal methods. Here the efficiency of independent component analysis (ICA) is evaluated in the context of auditory steady-state responses (ASSRs). A dedicated experimental setup was developed to simultaneously record EEG data from a normal hearing (NH) participant and CI artifact data from a phantom equipped with a CI. Hybrid data were obtained as a linear mixture of both sources. Amplitude-modulated continuous tones were used as stimuli to elicit ASSRs. After denoising, the comparison of denoised hybrid data and original NH data showed high correlations between the two datasets, demonstrating the efficiency of ICA. In the second part, the ICA was applied to real clinical CI ASSR data. Results support the usefulness of the methodology as regards the performance evaluation of signal processing methods applied to CI patient data prior to clinical application.


Assuntos
Algoritmos , Artefatos , Implantes Cocleares , Potenciais Evocados Auditivos/fisiologia , Adulto , Idoso , Simulação por Computador , Surdez/terapia , Eletroencefalografia/estatística & dados numéricos , Humanos , Modelos Lineares , Masculino , Modelos Estatísticos , Imagens de Fantasmas , Análise de Componente Principal , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa