Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Neuroinflammation ; 21(1): 128, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745307

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a progressive neurodegenerative disease of the central nervous system characterized by inflammation-driven synaptic abnormalities. Interleukin-9 (IL-9) is emerging as a pleiotropic cytokine involved in MS pathophysiology. METHODS: Through biochemical, immunohistochemical, and electrophysiological experiments, we investigated the effects of both peripheral and central administration of IL-9 on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. RESULTS: We demonstrated that both systemic and local administration of IL-9 significantly improved clinical disability, reduced neuroinflammation, and mitigated synaptic damage in EAE. The results unveil an unrecognized central effect of IL-9 against microglia- and TNF-mediated neuronal excitotoxicity. Two main mechanisms emerged: first, IL-9 modulated microglial inflammatory activity by enhancing the expression of the triggering receptor expressed on myeloid cells-2 (TREM2) and reducing TNF release. Second, IL-9 suppressed neuronal TNF signaling, thereby blocking its synaptotoxic effects. CONCLUSIONS: The data presented in this work highlight IL-9 as a critical neuroprotective molecule capable of interfering with inflammatory synaptopathy in EAE. These findings open new avenues for treatments targeting the neurodegenerative damage associated with MS, as well as other inflammatory and neurodegenerative disorders of the central nervous system.


Assuntos
Encefalomielite Autoimune Experimental , Interleucina-9 , Camundongos Endogâmicos C57BL , Microglia , Sinapses , Fator de Necrose Tumoral alfa , Animais , Camundongos , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/induzido quimicamente , Interleucina-9/metabolismo , Interleucina-9/farmacologia , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Sinapses/patologia , Fator de Necrose Tumoral alfa/metabolismo
2.
Eur J Neurol ; 31(3): e16071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37754770

RESUMO

BACKGROUND AND PURPOSE: Loss of long-term potentiation (LTP) expression has been associated with a worse disease course in relapsing-remitting multiple sclerosis (RR-MS) and represents a pathophysiological hallmark of progressive multiple sclerosis (PMS). Exercise and physical rehabilitation are the most prominent therapeutic approaches to promote synaptic plasticity. We aimed to explore whether physical exercise is able to improve the expression of LTP-like plasticity in patients with multiple sclerosis (MS). METHODS: In 46 newly diagnosed RR-MS patients, we explored the impact of preventive exercise on LTP-like plasticity as assessed by intermittent theta-burst stimulation. Patients were divided into sedentary or active, based on physical activity performed during the 6 months prior to diagnosis. Furthermore, in 18 patients with PMS, we evaluated the impact of an 8-week inpatient neurorehabilitation program on clinical scores and LTP-like plasticity explored using paired associative stimulation (PAS). Synaptic plasticity expression was compared in patients and healthy subjects. RESULTS: Reduced LTP expression was found in RR-MS patients compared with controls. Exercising RR-MS patients showed a greater amount of LTP expression compared with sedentary patients. In PMS patients, LTP expression was reduced compared with controls and increased after 8 weeks of rehabilitation. In this group of patients, LTP magnitude at baseline predicted the improvement in hand dexterity. CONCLUSIONS: Both preventive exercise and physical rehabilitation may enhance the expression of LTP-like synaptic plasticity in MS, with potential beneficial effects on disability accumulation.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Potenciação de Longa Duração/fisiologia , Estimulação Magnética Transcraniana , Plasticidade Neuronal/fisiologia , Exercício Físico , Potencial Evocado Motor/fisiologia
3.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791290

RESUMO

MiR-142-3p has recently emerged as key factor in tailoring personalized treatments for multiple sclerosis (MS), a chronic autoimmune demyelinating disease of the central nervous system (CNS) with heterogeneous pathophysiology and an unpredictable course. With its involvement in a detrimental regulatory axis with interleukin-1beta (IL1ß), miR-142-3p orchestrates excitotoxic synaptic alterations that significantly impact both MS progression and therapeutic outcomes. In this study, we investigated for the first time the influence of individual genetic variability on the miR-142-3p excitotoxic effect in MS. We specifically focused on the single-nucleotide polymorphism Val66Met (rs6265) of the brain-derived neurotrophic factor (BDNF) gene, known for its crucial role in CNS functioning. We assessed the levels of miR-142-3p and IL1ß in cerebrospinal fluid (CSF) obtained from a cohort of 114 patients with MS upon diagnosis. By stratifying patients according to their genetic background, statistical correlations with clinical parameters were performed. Notably, in Met-carrier patients, we observed a decoupling of miR-142-3p levels from IL1ß levels in the CSF, as well as from of disease severity (Expanded Disability Status Score, EDSS; Multiple Sclerosis Severity Score, MSSS; Age-Related Multiple Sclerosis Severity Score, ARMSS) and progression (Progression Index, PI). Our discovery of the interference between BDNF Val66Met polymorphism and the synaptotoxic IL1ß-miR-142-3p axis, therefore hampering miR-142-3p action on MS course, provides valuable insights for further development of personalized medicine in the field.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Interleucina-1beta , MicroRNAs , Esclerose Múltipla , Polimorfismo de Nucleotídeo Único , Humanos , Fator Neurotrófico Derivado do Encéfalo/genética , MicroRNAs/genética , Feminino , Masculino , Adulto , Esclerose Múltipla/genética , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/patologia , Pessoa de Meia-Idade , Interleucina-1beta/genética , Interleucina-1beta/líquido cefalorraquidiano , Índice de Gravidade de Doença , Predisposição Genética para Doença
4.
Mult Scler ; 29(4-5): 512-520, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36803228

RESUMO

BACKGROUND: Individual genetic variability may influence the course of multiple sclerosis (MS). The interleukin (IL)-8C>T rs2227306 single nucleotide polymorphism (SNP) regulates IL-8 activity in other clinical conditions; however, its role in MS has never been investigated. OBJECTIVES: To explore the association between IL-8 SNP rs2227306, cerebrospinal fluid (CSF) IL-8 concentrations, clinical, and radiological characteristics in a group of newly diagnosed MS patients. METHODS: In 141 relapsing-remitting (RR)-MS patients, rs2227306 polymorphism, CSF levels of IL-8, clinical, and demographical characteristics were determined. In 50 patients, structural magnetic resonance imaging (MRI) measures were also assessed. RESULTS: An association between CSF IL-8 and Expanded Disability Status Scale (EDSS) at diagnosis was found in our set of patients (r = 0.207, p = 0.014). CSF IL-8 concentrations were significantly higher in patients carrying the T variant of rs2227306 (p = 0.004). In the same group, a positive correlation emerged between IL-8 and EDSS (r = 0.273, p = 0.019). Finally, a negative correlation between CSF levels of IL-8 and cortical thickness emerged in rs2227306T carriers (r = -0.498, p = 0.005). CONCLUSION: We describe for the first time a role of SNP rs2227306 of IL-8 gene in regulating the expression and the activity of this inflammatory cytokine in MS.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico , Interleucina-8/genética , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Citocinas , Imageamento por Ressonância Magnética
5.
Mult Scler ; 29(11-12): 1383-1392, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37698019

RESUMO

BACKGROUND: The role of vaccine-mediated inflammation in exacerbating multiple sclerosis (MS) is a matter of debate. OBJECTIVE: In this cross-sectional study, we compared the cerebrospinal fluid (CSF) inflammation associated with MS relapses or anti-COVID-19 mRNA vaccinations in relapsing-remitting multiple sclerosis (RRMS). METHODS: We dosed CSF cytokines in 97 unvaccinated RRMS patients with clinical relapse within the last 100 days. In addition, we enrolled 29 stable RRMS and 24 control patients receiving COVID-19 vaccine within the last 100 days. RESULTS: In RRMS patients, a negative association was found between relapse distance and the CSF concentrations of the pro-inflammatory cytokines interleukin (IL)-2 (beta = -0.265, p = 0.016), IL-6 (beta = -0.284, p = 0.01), and IL-17 (beta = -0.224, p = 0.044). Conversely, vaccine distance positively correlated with a different set of cytokines including IL-12 (beta = 0.576, p = 0.002), IL-13 (beta = 0.432, p = 0.027), and IL-1ra (beta = 0.387, p = 0.05). These associations were significant also considering other clinical characteristics. No significant associations emerged between vaccine distance and CSF molecules in the control group. CONCLUSION: Vaccine for COVID-19 induces a central inflammatory response in RRMS patients that is qualitatively different from that associated with disease relapse.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Humanos , Vacinas contra COVID-19/efeitos adversos , Estudos Transversais , Citocinas , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Doença Crônica , Inflamação , Vacinação/efeitos adversos , Recidiva , RNA Mensageiro
6.
Neurobiol Dis ; 172: 105817, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835361

RESUMO

BACKGROUND: Elevated levels of specific proinflammatory molecules in the cerebrospinal fluid (CSF) have been associated with disability progression, enhanced neurodegeneration and higher incidence of mood disorders in people with multiple sclerosis (MS). Studies in animal models of MS suggest that preventive exercise may play an immunomodulatory activity, with beneficial effects on both motor deficits and behavioral alterations. Here we explored the impact of lifestyle physical activity on clinical presentation and associated central inflammation in a large group of newly diagnosed patients with MS. Furthermore, we addressed the causal link between exercise-mediated immunomodulation and mood symptoms in the animal setting. METHODS: A cross-sectional study was conducted on 235 relapsing-remitting MS patients at the time of the diagnosis. Patients were divided into 3 groups ("sedentary", "lifestyle physical activity" and "exercise") according to the level of physical activity in the six months preceding the evaluation. Patients underwent clinical, neuropsychological and psychiatric evaluation, magnetic resonance imaging and lumbar puncture for diagnostic purposes. The CSF levels of proinflammatory and anti-inflammatory cytokines were analyzed and compared with a group of 80 individuals with non-inflammatory and non-degenerative diseases. Behavioral and electrophysiological studies were carried out in control mice receiving intracerebral injection of IL-2 or vehicle. Behavior was also assessed in mice with experimental autoimmune encephalomyelitis (EAE), animal model of MS, reared in standard (sedentary group) or running wheel-equipped (exercise group) cages. RESULTS: In exercising MS patients, depression and anxiety were reduced compared to sedentary patients. The CSF levels of the interleukin-2 and 6 (IL-2, IL-6) were increased in MS patients compared with control individuals. In MS subjects exercise was associated with normalized CSF levels of IL-2. In EAE mice exercise started before disease onset reduced both behavioral alterations and striatal IL-2 expression. Notably, a causal role of IL-2 in mood disorders was shown. IL-2 administration in control healthy mice induced anxious- and depressive-like behaviors and impaired type-1 cannabinoid (CB1) receptor-mediated neurotransmission at GABAergic synapses, mimicking EAE-induced synaptic dysfunction. CONCLUSIONS: Our results indicate an immunomodulatory effect of exercise in MS patients, associated with reduced CSF expression of IL-2, which might result in reduced mood disorders. These data suggest that exercise in the early stages may act as a disease-modifying therapy in MS although further longitudinal studies are needed to clarify this issue.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Estudos Transversais , Encefalomielite Autoimune Experimental/patologia , Humanos , Interleucina-2/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Transtornos do Humor/etiologia
7.
Neuropathol Appl Neurobiol ; 48(2): e12765, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34490928

RESUMO

AIM: We recently proposed miR-142-3p as a molecular player in inflammatory synaptopathy, a new pathogenic hallmark of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE), that leads to neuronal loss independently of demyelination. MiR-142-3p seems to be unique among potential biomarker candidates in MS, since it is an inflammatory miRNA playing a dual role in the immune and central nervous systems. Here, we aimed to verify the impact of miR-142-3p circulating in the cerebrospinal fluid (CSF) of MS patients on clinical parameters, neuronal excitability and its potential interaction with disease modifying therapies (DMTs). METHODS AND RESULTS: In a cohort of 151 MS patients, we found positive correlations between CSF miR-142-3p levels and clinical progression, IL-1ß signalling as well as synaptic excitability measured by transcranial magnetic stimulation. Furthermore, therapy response of patients with 'low miR-142-3p' to dimethyl fumarate (DMF), an established disease-modifying treatment (DMT), was superior to that of patients with 'high miR-142-3p' levels. Accordingly, the EAE clinical course of heterozygous miR-142 mice was ameliorated by peripheral DMF treatment with a greater impact relative to their wild type littermates. In addition, a central protective effect of this drug was observed following intracerebroventricular and ex vivo acute treatments of EAE wild type mice, showing a rescue of miR-142-3p-dependent glutamatergic alterations. By means of electrophysiology, molecular and biochemical analysis, we suggest miR-142-3p as a molecular target of DMF. CONCLUSION: MiR-142-3p is a novel and potential negative prognostic CSF marker of MS and a promising tool for identifying personalised therapies.


Assuntos
Encefalomielite Autoimune Experimental/líquido cefalorraquidiano , MicroRNAs/líquido cefalorraquidiano , Esclerose Múltipla/líquido cefalorraquidiano , Transdução de Sinais/fisiologia , Adulto , Animais , Progressão da Doença , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Feminino , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Esclerose Múltipla/patologia , Estudos Prospectivos
8.
J Neurochem ; 159(5): 857-866, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34547109

RESUMO

Excessive extracellular concentrations of L-glutamate (L-Glu) can be neurotoxic and contribute to neurodegenerative processes in multiple sclerosis (MS). The association between cerebrospinal fluid (CSF) L-Glu levels, clinical features, and inflammatory biomarkers in patients with MS remains unclear. In 179 MS patients (relapsing remitting, RR, N = 157; secondary progressive/primary progressive, SP/PP, N = 22), CSF levels of L-Glu at diagnosis were determined and compared with those obtained in a group of 40 patients with non-inflammatory/non-degenerative disorders. Disability at the time of diagnosis, and after 1 year follow-up, was assessed using the Expanded Disability Status Scale (EDSS). CSF concentrations of lactate and of a large set of pro-inflammatory and anti-inflammatory molecules were explored. CSF levels of L-Glu were slightly reduced in MS patients compared to controls. In RR-MS patients, L-Glu levels correlated with EDSS after 1 year follow-up. Moreover, in MS patients, significant correlations were found between L-Glu and both CSF levels of lactate and the inflammatory molecules interleukin (IL)-2, IL-6, and IL-1 receptor antagonist. Altered expression of L-Glu is associated with disability progression, oxidative stress, and inflammation. These findings identify CSF L-Glu as a candidate neurochemical marker of inflammatory neurodegeneration in MS.


Assuntos
Ácido Glutâmico/líquido cefalorraquidiano , Mediadores da Inflamação/líquido cefalorraquidiano , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Doenças Neurodegenerativas/líquido cefalorraquidiano , Adulto , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Doenças Neurodegenerativas/diagnóstico por imagem , Estresse Oxidativo/fisiologia
9.
Brain Behav Immun ; 98: 13-27, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34391817

RESUMO

Exercise is increasingly recommended as a supportive therapy for people with Multiple Sclerosis (pwMS). While clinical research has still not disclosed the real benefits of exercise on MS disease, animal studies suggest a substantial beneficial effect on motor disability and pathological hallmarks such as central and peripheral dysregulated immune response. The hippocampus, a core area for memory formation and learning, is a brain region involved in MS pathophysiology. Human and rodent studies suggest that the hippocampus is highly sensitive to the effects of exercise, the impact of which on MS hippocampal damage is still elusive. Here we addressed the effects of chronic voluntary exercise on hippocampal function and damage in experimental autoimmune encephalomyelitis (EAE), animal model of MS. Mice were housed in standard or wheel-equipped cages starting from the day of immunization and throughout the disease course. Although running activity was reduced during the symptomatic phase, exercise significantly ameliorated motor disability. Exercise improved cognition that was assessed through the novel object recognition test and the nest building in presymptomatic and acute stages of the disease, respectively. In the acute phase exercise was shown to prevent EAE-induced synaptic plasticity abnormalities in the CA1 area, by promoting the survival of parvalbumin-positive (PV+) interneurons and by attenuating inflammation. Indeed, exercise significantly reduced microgliosis in the CA1 area, the expression of tumour necrosis factor (TNF) in microglia and, to a lesser extent, the hippocampal level of interleukin 1 beta (IL-1ß), previously shown to contribute to aberrant synaptic plasticity in the EAE hippocampus. Notably, exercise exerted a precocious and long-lasting mitigating effect on microgliosis that preceded its neuroprotective action, likely underlying the improved cognitive function observed in both presymptomatic and acute phase EAE mice. Overall, these data provide evidence that regular exercise improves cognitive function and synaptic and neuronal pathology that typically affect EAE/MS brains.


Assuntos
Pessoas com Deficiência , Encefalomielite Autoimune Experimental , Transtornos Motores , Animais , Hipocampo , Humanos , Inflamação , Camundongos , Camundongos Endogâmicos C57BL
10.
Mult Scler ; 26(10): 1237-1246, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31161863

RESUMO

BACKGROUND: Previous studies evidenced a link between metabolic dysregulation, inflammation, and neurodegeneration in multiple sclerosis (MS). OBJECTIVES: To explore whether increased adipocyte mass expressed as body mass index (BMI) and increased serum lipids influence cerebrospinal fluid (CSF) inflammation and disease severity. METHODS: In this cross-sectional study, 140 consecutive relapsing-remitting (RR)-MS patients underwent clinical assessment, BMI evaluation, magnetic resonance imaging scan, and blood and CSF collection before any specific drug treatment. The CSF levels of the following cytokines, adipocytokines, and inflammatory factors were measured: interleukin (IL)-6, IL-13, granulocyte macrophage colony-stimulating factor, leptin, ghrelin, osteoprotegerin, osteopontin, plasminogen activator inhibitor-1, resistin, and Annexin A1. Serum levels of triglycerides, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C) were assessed. RESULTS: A positive correlation emerged between BMI and Expanded Disability Status Scale score. Obese RR-MS patients showed higher clinical disability, increased CSF levels of the proinflammatory molecules IL-6 and leptin, and reduced concentrations of the anti-inflammatory cytokine IL-13. Moreover, both the serum levels of triglycerides and TC/HDL-C ratio showed a positive correlation with IL-6 CSF concentrations. CONCLUSION: Obesity and altered lipid profile are associated with exacerbated central inflammation and higher clinical disability in RR-MS at the time of diagnosis. Increased adipocytokines and lipids can mediate the negative impact of high adiposity on RR-MS course.


Assuntos
Esclerose Múltipla Recidivante-Remitente , Esclerose Múltipla , Estudos Transversais , Humanos , Inflamação , Esclerose Múltipla/complicações , Esclerose Múltipla Recidivante-Remitente/complicações , Obesidade/complicações
11.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977401

RESUMO

In multiple sclerosis (MS), inflammation alters synaptic transmission and plasticity, negatively influencing the disease course. In the present study, we aimed to explore the influence of the proinflammatory cytokine IL-1ß on peculiar features of associative Hebbian synaptic plasticity, such as input specificity, using the paired associative stimulation (PAS). In 33 relapsing remitting-MS patients and 15 healthy controls, PAS was performed on the abductor pollicis brevis (APB) muscle. The effects over the motor hot spot of the APB and abductor digiti minimi (ADM) muscles were tested immediately after PAS and 15 and 30 min later. Intracortical excitability was tested with paired-pulse transcranial magnetic stimulation (TMS). The cerebrospinal fluid (CSF) levels of IL-1ß were calculated. In MS patients, PAS failed to induce long-term potentiation (LTP)-like effects in the APB muscle and elicited a paradoxical motor-evoked potential (MEP) increase in the ADM. IL-1ß levels were negatively correlated with the LTP-like response in the APB muscle. Moreover, IL-1ß levels were associated with synaptic hyperexcitability tested with paired-pulse TMS. Synaptic hyperexcitability caused by IL-1ß may critically contribute to alter Hebbian plasticity in MS, inducing a loss of topographic specificity.


Assuntos
Potencial Evocado Motor , Interleucina-1beta/líquido cefalorraquidiano , Potenciação de Longa Duração , Estimulação Magnética Transcraniana , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/terapia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia
12.
Int J Mol Sci ; 21(19)2020 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-33020408

RESUMO

Extracellular vesicles (EVs) represent a new reality for many physiological and pathological functions as an alternative mode of intercellular communication. This is due to their capacity to interact with distant recipient cells, usually involving delivery of the EVs contents into the target cells. Intensive investigation has targeted the role of EVs in different pathological conditions, including multiple sclerosis (MS). MS is a chronic inflammatory and neurodegenerative disease of the nervous system, one of the main causes of neurological disability in young adults. The fine interplay between the immune and nervous systems is profoundly altered in this disease, and EVs seems to have a relevant impact on MS pathogenesis. Here, we provide an overview of both clinical and preclinical studies showing that EVs released from blood-brain barrier (BBB) endothelial cells, platelets, leukocytes, myeloid cells, astrocytes, and oligodendrocytes are involved in the pathogenesis of MS and of its rodent model experimental autoimmune encephalomyelitis (EAE). Most of the information points to an impact of EVs on BBB damage, on spreading pro-inflammatory signals, and altering neuronal functions, but EVs reparative function of brain damage deserves attention. Finally, we will describe recent advances about EVs as potential therapeutic targets and tools for therapeutic intervention in MS.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Vesículas Extracelulares/genética , Esclerose Múltipla/genética , Astrócitos/metabolismo , Plaquetas/metabolismo , Barreira Hematoencefálica/patologia , Células Endoteliais/patologia , Vesículas Extracelulares/metabolismo , Humanos , Leucócitos/metabolismo , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Células Mieloides/metabolismo , Oligodendroglia/metabolismo
13.
Neurobiol Dis ; 129: 102-117, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31100354

RESUMO

Growing data from human and animal studies indicate the beneficial effects of exercise on several clinical outcomes in patients with multiple sclerosis (MS), an autoimmune, demyelinating disease, suggesting that it may slow down the disease progression, by reducing brain damage. However, the mechanisms involved are still elusive. Aim of this study was to address the effects of voluntary running wheel in a toxic-demyelinating model of MS, in which demyelination and brain inflammation occur in response to cuprizone (CPZ) treatment. Mice were housed in standard or wheel-equipped cages starting from the day of CPZ or normal chow feeding for three or six weeks and evaluated for weight changes, locomotor skills and neuromuscular functions over the course of the experimental design. Biochemical, molecular biology and immunohistochemical analyses were performed. Exercise prevented early weight loss caused by CPZ, indicating improved wellness in these mice. Both neuromuscular function and motor coordination were significantly enhanced by exercise in CPZ-treated mice. Moreover, exercise induced an early protection against axonal damage and the loss of the myelin associated proteins, myelin basic protein (MBP) and 2',3'-Cyclic-nucleotide 3'-phosphodiesterase (CNPase), in the striatum and the corpus callosum, in coincidence of a strongly attenuated microglia activation in both brain areas. Further, during the late phase of the treatment, exercise in CPZ mice reduced the recruitment of new OLs compared to sedentary CPZ mice, likely due to the precocious protection against myelin damage. Overall, these results suggest that life-style interventions can be effective against the demyelinating-inflammatory processes occurring in the brains of MS patients.


Assuntos
Encéfalo/patologia , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/patologia , Condicionamento Físico Animal/fisiologia , Animais , Encéfalo/metabolismo , Cuprizona/toxicidade , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/induzido quimicamente , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/metabolismo , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Inibidores da Monoaminoxidase/toxicidade , Esclerose Múltipla
14.
Int J Mol Sci ; 20(24)2019 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-31817968

RESUMO

Studies of brain network connectivity improved understanding on brain changes and adaptation in response to different pathologies. Synaptic plasticity, the ability of neurons to modify their connections, is involved in brain network remodeling following different types of brain damage (e.g., vascular, neurodegenerative, inflammatory). Although synaptic plasticity mechanisms have been extensively elucidated, how neural plasticity can shape network organization is far from being completely understood. Similarities existing between synaptic plasticity and principles governing brain network organization could be helpful to define brain network properties and reorganization profiles after damage. In this review, we discuss how different forms of synaptic plasticity, including homeostatic and anti-homeostatic mechanisms, could be directly involved in generating specific brain network characteristics. We propose that long-term potentiation could represent the neurophysiological basis for the formation of highly connected nodes (hubs). Conversely, homeostatic plasticity may contribute to stabilize network activity preventing poor and excessive connectivity in the peripheral nodes. In addition, synaptic plasticity dysfunction may drive brain network disruption in neuropsychiatric conditions such as Alzheimer's disease and schizophrenia. Optimal network architecture, characterized by efficient information processing and resilience, and reorganization after damage strictly depend on the balance between these forms of plasticity.


Assuntos
Encéfalo/fisiologia , Potenciação de Longa Duração , Plasticidade Neuronal , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Esquizofrenia/fisiopatologia
15.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878257

RESUMO

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) characterized by demyelinating white matter lesions and neurodegeneration, with a variable clinical course. Brain network architecture provides efficient information processing and resilience to damage. The peculiar organization characterized by a low number of highly connected nodes (hubs) confers high resistance to random damage. Anti-homeostatic synaptic plasticity, in particular long-term potentiation (LTP), represents one of the main physiological mechanisms underlying clinical recovery after brain damage. Different types of synaptic plasticity, including both anti-homeostatic and homeostatic mechanisms (synaptic scaling), contribute to shape brain networks. In MS, altered synaptic functioning induced by inflammatory mediators may represent a further cause of brain network collapse in addition to demyelination and grey matter atrophy. We propose that impaired LTP expression and pathologically enhanced upscaling may contribute to disrupting brain network topology in MS, weakening resilience to damage and negatively influencing the disease course.


Assuntos
Esclerose Múltipla/metabolismo , Animais , Encéfalo/metabolismo , Humanos , Inflamação/metabolismo , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/genética , Plasticidade Neuronal/fisiologia
16.
J Neuroinflammation ; 15(1): 108, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-29655371

RESUMO

BACKGROUND: In the early phases of relapsing-remitting multiple sclerosis (RR-MS), a clear correlation between brain lesion load and clinical disability is often lacking, originating the so-called clinico-radiological paradox. Different factors may contribute to such discrepancy. In particular, synaptic plasticity may reduce the clinical expression of brain damage producing enduring enhancement of synaptic strength largely dependent on neurotrophin-induced protein synthesis. Cytokines released by the immune cells during acute inflammation can alter synaptic transmission and plasticity possibly influencing the clinical course of MS. In addition, immune cells may promote brain repair during the post-acute phases, by secreting different growth factors involved in neuronal and oligodendroglial cell survival. Platelet-derived growth factor (PDGF) is a neurotrophic factor that could be particularly involved in clinical recovery. Indeed, PDGF promotes long-term potentiation of synaptic activity in vitro and in MS and could therefore represent a key factor improving the clinical compensation of new brain lesions. The aim of the present study is to explore whether cerebrospinal fluid (CSF) PDGF concentrations at the time of diagnosis may influence the clinical course of RR-MS. METHODS: At the time of diagnosis, we measured in 100 consecutive early MS patients the CSF concentrations of PDGF, of the main pro- and anti-inflammatory cytokines, and of reliable markers of neuronal damage. Clinical and radiological parameters of disease activity were prospectively collected during follow-up. RESULTS: CSF PDGF levels were positively correlated with prolonged relapse-free survival. Radiological markers of disease activity, biochemical markers of neuronal damage, and clinical parameters of disease progression were instead not influenced by PDGF concentrations. Higher CSF PDGF levels were associated with an anti-inflammatory milieu within the central nervous system. CONCLUSIONS: Our results suggest that PDGF could promote a more prolonged relapse-free period during the course of RR-MS, without influencing inflammation reactivation and inflammation-driven neuronal damage and likely enhancing adaptive plasticity.


Assuntos
Esclerose Múltipla/líquido cefalorraquidiano , Fator de Crescimento Derivado de Plaquetas/líquido cefalorraquidiano , Adulto , Citocinas/líquido cefalorraquidiano , Avaliação da Deficiência , Feminino , Seguimentos , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Exame Neurológico , Estatísticas não Paramétricas , Adulto Jovem
17.
Mult Scler ; 24(7): 902-907, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28735565

RESUMO

BACKGROUND: Synaptic plasticity, the basic mechanism of clinical recovery after brain lesion, can also remarkably influence the clinical course of multiple sclerosis (MS). Physical rehabilitation represents the main treatment option to promote synaptic long-term potentiation (LTP) and to enhance spontaneous recovery of neurological deficits. OBJECTIVES: To overview the role of pharmacological treatment and physical rehabilitation in modulating LTP and enhancing clinical recovery in MS. RESULTS: Drug-induced LTP enhancement can be effectively used to promote functional recovery, alone or combined with rehabilitation. Also, as inflammatory cytokines alter synaptic transmission and plasticity in MS, pharmacological resolution of inflammation can positively influence clinical recovery. Finally, physical exercise could be an independent factor able to preserve or enhance LTP reserve both influencing signaling pathways involved in plasticity induction and maintenance, and decreasing inflammation. FUTURE DIRECTIONS: Better knowledge of LTP determinants may be useful to design specific strategies to promote recovery after a relapse and to reduce the progressive neurological deterioration in MS patients.


Assuntos
Terapia por Exercício/métodos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/reabilitação , Animais , Humanos , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia
18.
Neural Plast ; 2018: 8430123, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29861718

RESUMO

Cytokines are constitutively released in the healthy brain by resident myeloid cells to keep proper synaptic plasticity, either in the form of Hebbian synaptic plasticity or of homeostatic plasticity. However, when cytokines dramatically increase, establishing a status of neuroinflammation, the synaptic action of such molecules remarkably interferes with brain circuits of learning and cognition and contributes to excitotoxicity and neurodegeneration. Among others, interleukin-1ß (IL-1ß) and tumor necrosis factor (TNF) are the best studied proinflammatory cytokines in both physiological and pathological conditions and have been invariably associated with long-term potentiation (LTP) (Hebbian synaptic plasticity) and synaptic scaling (homeostatic plasticity), respectively. Multiple sclerosis (MS) is the prototypical neuroinflammatory disease, in which inflammation triggers excitotoxic mechanisms contributing to neurodegeneration. IL-ß and TNF are increased in the brain of MS patients and contribute to induce the changes in synaptic plasticity occurring in MS patients and its animal model, the experimental autoimmune encephalomyelitis (EAE). This review will introduce and discuss current evidence of the role of IL-1ß and TNF in the regulation of synaptic strength at both physiological and pathological levels, in particular speculating on their involvement in the synaptic plasticity changes observed in the EAE brain.


Assuntos
Encefalite/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Interleucina-1beta/metabolismo , Esclerose Múltipla/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Encefalite/patologia , Encefalomielite Autoimune Experimental/patologia , Humanos , Esclerose Múltipla/patologia
20.
Brain ; 138(Pt 2): 414-27, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25414038

RESUMO

Levodopa-induced dyskinesias are disabling motor complications of long-term dopamine replacement in patients with Parkinson's disease. In recent years, several alternative models have been proposed to explain the pathophysiological mechanisms underlying this hyperkinetic motor disorder. In particular, our group has shed new light on the role of the prefrontal cortex as a key site of interest, demonstrating that, among other areas, the inferior frontal cortex is particularly characterized by altered patterns of anatomical and functional changes. However, how neural activity varies depending on levodopa treatment in patients with dyskinesias and whether the reported prefrontal abnormalities may have a critical role in dyskinesias is debated. To answer these questions we performed independent functional magnetic resonance imaging and repetitive transcranial magnetic stimulation studies. In the first experiment we applied resting state functional magnetic resonance imaging on 12 patients with Parkinson's disease with levodopa-induced dyskinesias and 12 clinically matched patients without dyskinesias, before and after administration of levodopa. Functional connectivity of brain networks in the resting state was assessed in both groups. We chose the right inferior frontal cortex as the seed region given the evidence highlighting the role of this region in motor control. In a second experiment, we applied different forms of repetitive transcranial magnetic stimulation over the right inferior frontal cortex in a new group of dyskinetic patients who were taking a supramaximal dose of levodopa, to verify the clinical relevance of this area in controlling the development of hyperkinetic movements. The resting state functional imaging analysis revealed that in patients with levodopa-induced dyskinesias connectivity of the right inferior frontal cortex was decreased with the left motor cortex and increased with the right putamen when compared to patients without levodopa-induced dyskinesias. This abnormal pattern of connectivity was evident only during the ON phase of levodopa treatment and the degree of such alteration correlated with motor disability. The repetitive TMS experiments showed that a session of continuous but not intermittent or sham theta burst stimulation applied over the inferior frontal cortex was able to reduce the amount of dyskinesias induced by a supramaximal single dose of levodopa, suggesting that this area may play a key role in controlling the development of dyskinesias. Our combined resting state functional magnetic resonance and transcranial magnetic stimulation studies demonstrate that pathophysiological mechanisms underlying levodopa-induced dyskinesias may extend beyond the 'classical' basal ganglia dysfunctions model, including the modulation performed by the neural network centred on the inferior frontal cortex.


Assuntos
Antiparkinsonianos/efeitos adversos , Discinesia Induzida por Medicamentos/fisiopatologia , Levodopa/efeitos adversos , Córtex Pré-Frontal/fisiopatologia , Idoso , Vias Eferentes/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Ritmo Teta/efeitos dos fármacos , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa