Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(15): 6770-6778, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385287

RESUMO

Formamidinium lead triiodide (FAPbI3) currently holds the record conversion efficiency in the single-junction perovskite solar cell. Iodine management is known to be essential to suppress defect-induced nonradiative losses in FAPbI3 active layers. However, the origin of nonradiative losses and the underlying mechanism of suppressing such losses by iodine-concentration management remain unknown. Here, through first-principles simulation, we demonstrate that native point defects are not responsible for the nonradiative losses in FAPbI3. Instead, hydrogen ions, which can be abundant under both iodine-rich and iodine-poor conditions in FAPbI3, act as efficient nonradiative recombination centers and are proposed to be responsible for the suppressed power conversion efficiency. Moreover, iodine-moderate synthesis conditions can favor the formation of electrically inactive molecular hydrogen, which can dramatically suppress the detrimental hydrogen ions. This work identifies the dominant nonradiative recombination centers in the widely used FAPbI3 layers and rationalizes how the prevailing iodine management reduces the nonradiative losses. Minimizing the unintentional hydrogen incorporation in the perovskite is critical for achieving high device performance.

2.
Anal Chem ; 93(29): 10175-10186, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34264072

RESUMO

The knowledge of nonequilibrium electron transfer rates is paramount for the design of modern hybrid electrocatalysts. Herein, we propose a general simulation-based approach to interpret variable-frequency square wave voltammetry (VF-SWV) for heterogeneous materials featuring reversible redox behavior. The resistive and capacitive corrections, inclusion of the frequency domain, and statistical treatment of the surface redox kinetics are used to account for the non-ideal nature of electrodes. This approach has been validated in our study of CoII/CoI redox transformation for Co tetraphenylporphyrin (CoTPP) immobilized on carbon cloth and multiwalled carbon nanotubes (CNTs) - one of the most active heterogeneous molecular catalysts in carbon dioxide (CO2) electroreduction. It is demonstrated that the modeling of experimental data furnishes the capacitance of the surface double layer C, uncompensated resistance Ru, symmetry coefficients α, kinetic constants k0, and equilibrium redox potentials E0 in one experiment. Moreover, the proposed method yields a stochastic map of the redox kinetics rather than a single value, thus exposing the inhomogeneous nature of the electrochemically active layer. The computed parameters are in excellent agreement with the results of the classic methods such as cyclic voltammetry and fall in line with the reported CoTPP catalytic activity. Thus, VF-SWV is suitable for the study of high-level composites such as covalent organic frameworks and organometallic-CNT mixtures. The resulting insights into the electron transfer mechanisms are especially useful for the rational development of the catalyst-support interfaces and immobilization methods.

3.
Nanotechnology ; 32(43)2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34243178

RESUMO

Of late, atomically thin two-dimensional zinc-sulfide (2D-ZnS) shows great potential for advanced nanodevices and as a substitute to graphene and transition metal di-chalcogenides owing to its exceptional optical and electronic properties. However, the functional performance of nanodevices significantly depends on the effective heat management of the system. In this paper, we explored the thermal transport properties of 2D-ZnS through molecular dynamics simulations. The impact of length, temperature, and vacancy defects on the thermal properties of 2D-ZnS are systematically investigated. We found that the thermal conductivity (TC) rises monotonically with increasing sheet length, and the bulk TC of ∼30.67 W mK-1is explored for an infinite length ZnS. Beyond room temperature (300 K), the TC differs from the usual 1/Trule and displays an abnormal, slowly declining behavior. The point vacancy (PV) shows the largest decrease in TC compared to the bi vacancy (BV) defects. We calculated phonon modes for various lengths, temperatures, and vacancies to elucidate the TC variation. Conversely, quantum corrections are used to avoid phonon modes' icing effects on the TC at low temperatures. The obtained phonon density of states (PDOS) shows a softening and shrinking nature with increasing temperature, which is responsible for the anomaly in the TC at high temperatures. Owing to the increase of vacancy concentration, the PDOS peaks exhibit a decrease for both types of defects. Moreover, the variation of the specific heat capacity and entropy with BV and PV signify our findings of 2D-ZnS TC at diverse concentrations along with the different forms of vacancies. The results elucidated in this study will be a guide for efficient heat management of ZnS-based optoelectronic and nano-electronic devices.

4.
Chemphyschem ; 21(2): 164-174, 2020 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-31705615

RESUMO

Using first-principles calculations we systematically investigate the atomic, electronic and magnetic properties of novel two-dimensional materials (2DM) with a stoichiometry C3 N which has recently been synthesized. We investigate how the number of layers affect the electronic properties by considering monolayer, bilayer and trilayer structures, with different stacking of the layers. We find that a transition from semiconducting to metallic character occurs which could offer potential applications in future nanoelectronic devices. We also study the affect of width of C3 N nanoribbons, as well as the radius and length of C3 N nanotubes, on the atomic, electronic and magnetic properties. Our results show that these properties can be modified depending on these dimensions, and depend markedly on the nature of the edge states. Functionalization of the nanostructures by the adsorption of H adatoms is found induce metallic, half-metallic, semiconducting and ferromagnetic behavior, which offers an approach to tailor the properties, as can the application of strain. Our calculations give insight into this new family of C3 N nanostructures, which reveal unusual electronic and magnetic properties, and may have great potential in applications such as sensors, electronics and optoelectronic at the nanoscale.

5.
Phys Chem Chem Phys ; 22(42): 24471-24479, 2020 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-33089277

RESUMO

Density functional theory calculations are performed in order to study the structural and electronic properties of monolayer Pt2HgSe3. Our results show that the dynamically stable monolayer Pt2HgSe3 is a topological insulator with a band gap of 160 meV. In addition, the effect of layer thickness, strain and electric field on the electronic properties are systematically investigated using fully relativistic calculations. We find that the electronic properties are sensitive to the applied electric field. With increasing electric field strength up to 0.5 V Å-1, the band gap decreases from 160 to 10 meV at 0.5 V Å-1. Interestingly, upon further increasing the electric field up to 1.0 V Å-1, the band gap opens again and reaches its bare value (160 meV) at 1.0 V Å-1, which indicates that the band gap is reversibly controllable via the applied external electric field. Moreover, the electronic properties are also examined under uniaxial and biaxial strain. Our results reveal that the band gap value can be tuned to 150 meV (at 1%) and to 92 meV (at 6%) under uniaxial strain, while under biaxial tensile strain, it increases to 170 meV at 5% and fluctuates between 150 and 100 meV in the range of 5-10%. In contrast, the biaxial-compressive strain is found to drive the semiconducting-to-metallic transition for sufficiently large compressions (over 8%). On the other hand, we find that increasing the thickness of Pt2HgSe3 modifies the band gap to 150 meV (for the bilayer) and 140 meV (for the trilayer). In the bilayer Pt2HgSe3 structure, we further investigated the effect of out-of-plane pressure, both compressive and tensile, and our results show that the electronic structure of bilayer Pt2HgSe3 is largely preserved. Our study provides new insight into the modification of the electronic structure of monolayer Pt2HgSe3 upon application of external fields and variation in the layer thickness.

6.
Phys Chem Chem Phys ; 22(4): 2276-2282, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31919485

RESUMO

The exceptionally low deformation potential is proposed as the key determinant for the high carrier mobility in α-phosphorene. This is related to its unique corrugated two-dimensional structure. Herein, we present a systematic first-principles density functional theory study on ten α-phosphorene isostructures by calculating the three key parameters of the carrier mobility. An electron mobility in the armchair direction with a value comparable to α-phosphorene is found in α-PAs, α-PCH, and α-AsCH, due to the structure-caused low deformation potential. The highest carrier mobility is predicted in α-graphane because of a two-orders-of-magnitude smaller deformation potential than the other isostructures. The low deformation potential can be correlated to the separation of charge carriers from neighbouring unit cells. This study highlights a feasible route to generating high mobility materials through deformation potential engineering.

7.
Phys Chem Chem Phys ; 22(4): 2249-2261, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31916563

RESUMO

In the present work, the effect of various embedded atom impurities on tuning electronic and magnetic properties of C3N4 and C4N3 nanosheets have been studied using first-principles calculations. Our calculations show that C3N4 is a semiconductor and it exhibits extraordinary electronic properties such as dilute-magnetic semiconductor (with H, F, Cl, Be, V, Fe and Co); metal (with N, P, Mg and Ca), half-metal (with Li, Na, K, Al, Sc, Cr, Mn, and Cu) and semiconductor (with O, S, B, C, Si, Ti, Ni and Zn) with the band gaps in the range of 0.3-2.0 eV depending on the species of embedded atom. The calculated electronic properties reveal that C4N3 is a half-metal and it retains half-metallic character with embedded H, O, S, F, B, N, P, Be, Mg, Al, Sc, V, Fe, Ni and Zn atoms. The substitution of Cl, C, Cr and Mn atoms create ferromagnetic-metal character in the C4N3 nanosheet, embedded Co and Cu atoms exhibit a dilute-magnetic semiconductor nature, and embedded Ti atoms result in the system becoming a semiconductor. Therefore, our results reveal the fact that the band gap and magnetism can be modified or induced by various atom impurities, thus, offering effective possibilities to tune the electronic and magnetic properties of C3N4 and C4N3 nanosheets.

8.
Phys Chem Chem Phys ; 22(11): 6418-6433, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32149297

RESUMO

Using first-principles calculations, we study the effect of embedding various atoms into the nanopore sites of both C6N6 and C6N8 monolayers. Our results indicate that the embedded atoms significantly affect the electronic and magnetic properties of C6N6 and C6N8 monolayers and lead to extraordinary and multifarious electronic properties, such as metallic, half-metallic, spin-glass semiconductor and dilute-magnetic semiconductor behaviour. Our results reveal that the H atom concentration dramatically affects the C6N6 monolayer. On increasing the H coverage, the impurity states also increase due to H atoms around the Fermi-level. C6N6 shows metallic character when the H atom concentration reaches 6.25%. Moreover, the effect of charge on the electronic properties of both Cr@C6N6 and C@C6N8 is also studied. Cr@C6N6 is a ferromagnetic metal with a magnetic moment of 2.40 µB, and when 0.2 electrons are added and removed, it remains a ferromagnetic metal with a magnetic moment of 2.57 and 2.77 µB, respectively. Interestingly, one can observe a semi-metal, in which the VBM and CBM in both spin channels touch each other near the Fermi-level. C@C6N8 is a semiconductor with a nontrivial band gap. When 0.2 electrons are removed, it remains metallic, and under excess electronic charge, it exhibits half-metallic behaviour.

9.
Phys Chem Chem Phys ; 21(17): 8767-8773, 2019 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-30968874

RESUMO

From first-principles calculations, we predict four new intercalated hexagonal XBC (X = Mg, Ca, Sr, Ba) compounds to be dynamically stable and phonon-mediated superconductors. These compounds form a LiBC like structure but are metallic. The calculated superconducting critical temperature, Tc, of MgBC is 51 K. The strong attractive interaction between σ-bonding electrons and the B1g phonon mode gives rise to a larger electron-phonon coupling constant (1.135) and hence high Tc; notably, higher than that of MgB2. The other compounds have a low superconducting critical temperature (4-17 K) due to the interaction between σ-bonding electrons and low energy phonons (E2u modes). Due to their energetic and dynamic stability, we envisage that these compounds can be synthesized experimentally.

10.
Phys Chem Chem Phys ; 21(42): 23742-23748, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31637382

RESUMO

Polypyridyl transition metal complexes are well-established homogeneous electrocatalysts for the reduction of CO2. In this work, the relationship between the transition metal (including V, Cr, Mn, Nb, Mo, Ta, W, and Re) and the catalytic activity has been theoretically investigated using density functional theory. It is found that the transition metal center determines the catalytic activity of M(bpy)(CO)4. Among the eight metal complexes, Re(bpy)(CO)4 and Mn(bpy)(CO)4 exhibit better catalytic activity due to the weaker adsorption strength of CO and lower d-band center, which makes it easier to activate the metal complex and results in a lower reaction free energy of the rate-determining step at the reduction potential. We believe that these results can provide guidelines for the design of novel electrocatalysts for CO2 reduction.

11.
Phys Chem Chem Phys ; 21(32): 17859-17867, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31378789

RESUMO

The redox switching of non-alternant azulenequinone/hydroquinone molecules is investigated using density functional theory and the nonequilibrium Green's function. We examined the electronic transport properties of these molecules when subtended between gold electrodes. The results indicated that the reduction of 1,5-azulenequinone and oxidation of 1,7-azulene hydroquinone 2,6-dithiolate lead to a significant enhancement of the current compared to the respective oxidation of 1,5-azulene hydroquinone and reduction of 1,7-azulenequinone, thus "switching on" the transmission. The significance of the position of the functional group on the switching behavior has been analyzed and whether destructive quantum interference exists in the electron transport of the 1,5 position in particular has been addressed. Our work provides theoretical foundations for organic redox switching components in nanoelectronic circuits.

12.
Small ; : e1801586, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29883045

RESUMO

Supported metal nanoparticles play key roles in nanoelectronics, sensors, energy storage/conversion, and catalysts for the sustainable production of fuels and chemicals. Direct observation of the dynamic processes of nanocatalysts at high temperatures and the confinement of supports is of great significance to investigate nanoparticle structure and functions for practical utilization. Here, in situ high-resolution transmission electron microscopy photos and videos are combined with dynamics simulations to reveal the real-time dynamic behavior of Pt nanocatalysts at operation temperatures. Amorphous Pt surface on moving and deforming particles is the working structure during the high operation temperature rather than a static crystal surface and immobilization on supports as proposed before. The free rearrangement of the shape of Pt nanoparticles allows them to pass through narrow windows, which is generally considered to immobilize the particles. The Pt particles, no matter what their sizes, prefer to stay inside nanopores even when they are fast moving near an opening at temperatures up to 900 °C. The porous confinement also blocks the sintering of the particles under the confinement size of pores. These contribute to the continuous high activity and stability of Pt nanocatalysts inside nanoporous supports during a long-term evaluation of catalytic reforming reaction.

13.
Phys Chem Chem Phys ; 20(37): 24027-24032, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30202845

RESUMO

Germanene has emerged as a novel two-dimensional material with various interesting properties and applications. Here we report the possibility of superconductivity in a stable potassium intercalated germanene compound, KGe2, with a transition temperature Tc ∼ 11 K, and an electron-phonon coupling of 1.9. Applying a 5% tensile strain, which reduces the buckling height by 4.5%, leads to the reduction of the electron-phonon coupling by 11% and a slight increase in Tc ∼ 12 K. That is, strong electron-phonon coupling results from the buckled structure of the germanene layers. Despite being an intercalated van der Waals material similar to intercalated graphite superconductors, it does not possess an occupied interlayer state.

14.
Phys Chem Chem Phys ; 20(4): 2356-2362, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29308464

RESUMO

In this paper, we present a detailed study of the stoichiometric and reduced Co9S8 pentlandite magnetic properties, based on density functional theory. We analyze both its geometry and electronic properties and show that only by the inclusion of the Hubbard term it is possible to correctly describe d-d splitting, which is necessary to accurately characterize the Co9S8 spin configuration and its antiferromagnetic nature. We also analyze the effect of sulfur vacancies and predict the formation of ferromagnetic clusters that give local ferromagnetic character to non-stoichiometric Co9S8, which may explain the contradictory experimental results reported in the literature.

15.
Inorg Chem ; 56(11): 6545-6550, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28509553

RESUMO

Phase ordering in the mixed-valence oxide Sb2O4 has been examined by density functional theory (DFT) calculations. We find that the ground-state total energies of the two phases (α and ß) are almost degenerate and are highly sensitive to the choice of the approximation to the exchange correlation (xc) functional used in our calculations. Interestingly, with the inclusion of the zero-point energy corrections, the α phase is predicted to be the ground state polymorph for most xc functionals used. We also illustrate the pronounced stereochemical activity of Sb in these polymorphs of Sb2O4, setting an exception to the Keve and Skapski rule. Here, we find that the actual bonding in the α phase is more asymmetric, while the anomalous stability of the ß phase could be rationalized from kinetic considerations. We find a non-negligible activation barrier for this α-ß phase transition, and the presence of a saddle point (ß phase) supports the separation of Sb(III) over a continuous phase transition, as observed in experiments.

16.
Phys Chem Chem Phys ; 18(2): 939-46, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26650401

RESUMO

To better understand the thermoelectric efficiency of the Mg-based thermoelectrics, using hybrid density-functional theory, we study the microscopic origins of valley degeneracies in the conduction band of the solid solution Mg2Si(1-x)Sn(x) and its constituent components--namely, Mg2Si and Mg2Sn. In the solid solution of Mg2Si(1-x)Sn(x), the sublattices are expected to undergo either tensile or compressive strain in the light of Vegard's law. Interestingly, we find both tensile strain of Mg2Si and compressive strain of Mg2Sn enhance the conduction band valley degeneracy. We suggest that the optimal sublattice strain as one of the origins of the enhanced Seebeck coefficient in the Mg2Si(1-x)Sn(x) system. In order to visualize the enhanced band valley degeneracy at elevated temperatures, the ground state eigenvalues and weights are projected by convolution functions that account for high temperature effects. Our results provide theoretical evidences for the role of sublattice strain in the band valley degeneracy observed in Mg2Si(1-x)Sn(x).

17.
Phys Chem Chem Phys ; 17(14): 9288-312, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25760562

RESUMO

We report on a combined density functional theory and the experimental study of the O1s binding energies and X-ray Absorption Near Edge Structure (XANES) of a variety of oxygen species on Ag(111) and Ag(110) surfaces. Our theoretical spectra agree with our measured results for known structures, including the p(N× 1) reconstruction of the Ag(110) surface and the p(4 × 4) reconstruction of the Ag(111) surface. Combining the O1s binding energy and XANES spectra yields unique spectroscopic fingerprints, allowing us to show that unreconstructed atomic oxygen is likely not present on either surface under equilibrium conditions at oxygen chemical potentials typical for ethylene epoxidation. Furthermore, we find no adsorbed or dissolved atomic species whose calculated spectroscopic features agree with those measured for the oxygen species believed to catalyze the partial oxidation of ethylene.

18.
Phys Chem Chem Phys ; 16(48): 26735-40, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25371061

RESUMO

Surface oxidation processes are crucial for the functionality of Cu-based catalytic systems used for methanol synthesis, partial oxidation of methanol or the water-gas shift reaction. We assess the stability and population of the "8"-structure, a [formula, see text:] oxide phase, on the Cu(111) surface. This structure has been observed in X-ray photoelectron spectroscopy and low-energy electron diffraction experiments as a Cu(111) surface reconstruction that can be induced by a hyperthermal oxygen molecular beam. Using density-functional theory calculations in combination with ab initio atomistic thermodynamics and Boltzmann statistical mechanics, we find that the proposed oxide superstructure is indeed metastable and that the population of the "8"-structure is competitive with the known "29" and "44" oxide film structures on Cu(111). We show that the configuration of O and Cu atoms in the first and second layers of the "8"-structure closely resembles the arrangement of atoms in the first two layers of Cu2O(110), where the atoms in the "8"-structure are more constricted. Cu2O(110) has been suggested in the literature as the most active low index facet for reactions such as water splitting under light illumination. If the "8"-structure were to form during a catalytic process, it is therefore likely to be one of the reactive phases.

19.
Phys Chem Chem Phys ; 16(19): 9002-14, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24695725

RESUMO

The energy required to form and remove vacancies on metal surfaces mediates the rate of mass transport during a wide range of processes. These energies are known to be sensitive to environmental conditions. Here, we use electronic structure density functional theory calculations to show that the surface vacancy formation energy of silver changes markedly in the presence of adsorbed and dissolved oxygen. We found that adsorbed atomic oxygen can reduce the surface vacancy formation energy of the Ag(111) surface by more than 30%, whereas surface vacancy formation becomes exothermic in the presence of pure subsurface oxygen. We went on to show that the total directionality of the topologically defined bond paths can be used to understand these changes. The resulting structure-property relationship was used to predict the behavior of silver in different atmospheres. We show that the surface vacancy formation energy decreases when electronegative elements are adsorbed on the surface, but that it can increase when electropositive elements are adsorbed.

20.
ACS Nano ; 18(5): 4559-4569, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38264984

RESUMO

The oxidation of copper and its surface oxides are gaining increasing attention due to the enhanced CO2 reduction reaction (CO2RR) activity exhibited by partially oxidized copper among the copper-based catalysts. The "8" surface oxide on Cu(111) is seen as a promising structure for further study due to its resemblance to the highly active Cu2O(110) surface in the C-C coupling of the CO2RR, setting it apart from other O/Cu(111) surface oxides resembling Cu2O(111). However, recent X-ray photoelectron spectroscopy analysis challenges the currently accepted atomic structure of the "8" surface oxide, prompting a need for reevaluation. This study highlights the limitations of conventional methods when addressing such challenges, leading us to adopt global optimization search techniques. After a rigorous process to ensure robustness, the unbiased global minimum of the "8" surface oxide is identified. Interestingly, this configuration differs significantly from other surface oxides and also from previous "8" models while retaining similarities to the Cu2O(110) surface.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa