Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 114(37): E7670-E7678, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28847944

RESUMO

Do corals form their skeletons by precipitation from solution or by attachment of amorphous precursor particles as observed in other minerals and biominerals? The classical model assumes precipitation in contrast with observed "vital effects," that is, deviations from elemental and isotopic compositions at thermodynamic equilibrium. Here, we show direct spectromicroscopy evidence in Stylophora pistillata corals that two amorphous precursors exist, one hydrated and one anhydrous amorphous calcium carbonate (ACC); that these are formed in the tissue as 400-nm particles; and that they attach to the surface of coral skeletons, remain amorphous for hours, and finally, crystallize into aragonite (CaCO3). We show in both coral and synthetic aragonite spherulites that crystal growth by attachment of ACC particles is more than 100 times faster than ion-by-ion growth from solution. Fast growth provides a distinct physiological advantage to corals in the rigors of the reef, a crowded and fiercely competitive ecosystem. Corals are affected by warming-induced bleaching and postmortem dissolution, but the finding here that ACC particles are formed inside tissue may make coral skeleton formation less susceptible to ocean acidification than previously assumed. If this is how other corals form their skeletons, perhaps this is how a few corals survived past CO2 increases, such as the Paleocene-Eocene Thermal Maximum that occurred 56 Mya.


Assuntos
Antozoários/metabolismo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Animais , Antozoários/crescimento & desenvolvimento , Antozoários/fisiologia , Calcificação Fisiológica/fisiologia , Recifes de Corais , Cristalização , Ecossistema , Concentração de Íons de Hidrogênio , Minerais , Água do Mar/química
2.
Nano Lett ; 18(6): 3473-3480, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29709191

RESUMO

Mixed cation metal halide perovskites with increased power conversion efficiency, negligible hysteresis, and improved long-term stability under illumination, moisture, and thermal stressing have emerged as promising compounds for photovoltaic and optoelectronic applications. Here, we shed light on photoinduced halide demixing using in situ photoluminescence spectroscopy and in situ synchrotron X-ray diffraction (XRD) to directly compare the evolution of composition and phase changes in CH(NH2)2CsPb-halide (FACsPb-) and CH3NH3Pb-halide (MAPb-) perovskites upon illumination, thereby providing insights into why FACs-perovskites are less prone to halide demixing than MA-perovskites. We find that halide demixing occurs in both materials. However, the I-rich domains formed during demixing accumulate strain in FACsPb-perovskites but readily relax in MA-perovskites. The accumulated strain energy is expected to act as a stabilizing force against halide demixing and may explain the higher Br composition threshold for demixing to occur in FACsPb-halides. In addition, we find that while halide demixing leads to a quenching of the high-energy photoluminescence emission from MA-perovskites, the emission is enhanced from FACs-perovskites. This behavior points to a reduction of nonradiative recombination centers in FACs-perovskites arising from the demixing process and buildup of strain. FACsPb-halide perovskites exhibit excellent intrinsic material properties with photoluminescence quantum yields that are comparable to MA-perovskites. Because improved stability is achieved without sacrificing electronic properties, these compositions are better candidates for photovoltaic applications, especially as wide bandgap absorbers in tandem cells.

3.
Nano Lett ; 18(3): 1952-1961, 2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29481758

RESUMO

Composite multiferroic systems, consisting of a piezoelectric substrate coupled with a ferromagnetic thin film, are of great interest from a technological point of view because they offer a path toward the development of ultralow power magnetoelectric devices. The key aspect of those systems is the possibility to control magnetization via an electric field, relying on the magneto-elastic coupling at the interface between the piezoelectric and the ferromagnetic components. Accordingly, a direct measurement of both the electrically induced magnetic behavior and of the piezo-strain driving such behavior is crucial for better understanding and further developing these materials systems. In this work, we measure and characterize the micron-scale strain and magnetic response, as a function of an applied electric field, in a composite multiferroic system composed of 1 and 2 µm squares of Ni fabricated on a prepoled [Pb(Mg1/3Nb2/3)O3]0.69-[PbTiO3]0.31 (PMN-PT) single crystal substrate by X-ray microdiffraction and X-ray photoemission electron microscopy, respectively. These two complementary measurements of the same area on the sample indicate the presence of a nonuniform strain which strongly influences the reorientation of the magnetic state within identical Ni microstructures along the surface of the sample. Micromagnetic simulations confirm these experimental observations. This study emphasizes the critical importance of surface and interface engineering on the micron-scale in composite multiferroic structures and introduces a robust method to characterize future devices on these length scales.

4.
Phys Rev Lett ; 121(2): 027001, 2018 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-30085755

RESUMO

We present the strain and temperature dependence of an anomalous nematic phase in optimally doped BaFe_{2}(As,P)_{2}. Polarized ultrafast optical measurements reveal broken fourfold rotational symmetry in a temperature range above T_{c} in which bulk probes do not detect a phase transition. Using ultrafast microscopy, we find that the magnitude and sign of this nematicity vary on a 50-100 µm length scale, and the temperature at which it onsets ranges from 40 K near a domain boundary to 60 K deep within a domain. Scanning Laue microdiffraction maps of local strain at room temperature indicate that the nematic order appears most strongly in regions of weak, isotropic strain. These results indicate that nematic order arises in a genuine phase transition rather than by enhancement of local anisotropy by a strong nematic susceptibility. We interpret our results in the context of a proposed surface nematic phase.

5.
Inorg Chem ; 56(14): 8026-8035, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28650643

RESUMO

The effect of incorporation of Fe2+ on the perovskite (Pbnm) and postperovskite (Cmcm) structures was investigated in the (Mg,Fe)GeO3 system at high pressures and temperatures using laser-heated diamond anvil cell and synchrotron X-ray diffraction. Samples with compositions of Mg# ≥ 48 were shown to transform to the perovskite (∼30 GPa and ∼1500 K) and postperovskite (>55 GPa, ∼1600-1800 K) structures. Compositions with Mg# ≥ 78 formed single-phase perovskite and postperovskite, whereas those with Mg# < 78 showed evidence for partial decomposition. The incorporation of Fe into the perovskite structure causes a decrease in octahedral distortion as well as a modest decrease in bulk modulus (K0) and a modest increase in zero-pressure volume (V0). It also leads to a decrease in the perovskite-to-postperovskite phase transition pressure by ∼9.5 GPa over compositions from Mg#78 to Mg#100.

6.
Rev Sci Instrum ; 92(5): 053901, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243295

RESUMO

We describe two orthogonal radiography geometries at the OMEGA EP laser facility, which we refer to as side-on and face-on radiography. This setup can be used to determine quantitative information about the areal densities in solid, particulate, or liquid samples. We show sample images from these two different platforms that use the radiography diagnostic, one of material microjetting by the Richtmeyer-Meshkov instability and one of a deforming tin sample by the Rayleigh-Taylor instability, demonstrating the versatile applicability of such measurements in the field of high-energy density physics. The analytical methodology behind the quantitative Rayleigh-Taylor face-on radiography is also demonstrated and can be applied to other types of samples.

7.
Nat Commun ; 12(1): 5624, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561460

RESUMO

Complex phenomena are prevalent during the formation of materials, which affect their processing-structure-function relationships. Thin films of methylammonium lead iodide (CH3NH3PbI3, MAPI) are processed by spin coating, antisolvent drop, and annealing of colloidal precursors. The structure and properties of transient and stable phases formed during the process are reported, and the mechanistic insights of the underlying transitions are revealed by combining in situ data from grazing-incidence wide-angle X-ray scattering and photoluminescence spectroscopy. Here, we report the detailed insights on the embryonic stages of organic-inorganic perovskite formation. The physicochemical evolution during the conversion proceeds in four steps: i) An instant nucleation of polydisperse MAPI nanocrystals on antisolvent drop, ii) the instantaneous partial conversion of metastable nanocrystals into orthorhombic solvent-complex by cluster coalescence, iii) the thermal decomposition (dissolution) of the stable solvent-complex into plumboiodide fragments upon evaporation of solvent from the complex and iv) the formation (recrystallization) of cubic MAPI crystals in thin film.

8.
J Vis Exp ; (136)2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29985343

RESUMO

In this report, we describe a detailed procedure for acquiring and processing x-ray microfluorescence (µXRF), and Laue and powder microdiffraction two-dimensional (2D) maps at beamline 12.3.2 of the Advanced Light Source (ALS), Lawrence Berkeley National Laboratory. Measurements can be performed on any sample that is less than 10 cm x 10 cm x 5 cm, with a flat exposed surface. The experimental geometry is calibrated using standard materials (elemental standards for XRF, and crystalline samples such as Si, quartz, or Al2O3 for diffraction). Samples are aligned to the focal point of the x-ray microbeam, and raster scans are performed, where each pixel of a map corresponds to one measurement, e.g., one XRF spectrum or one diffraction pattern. The data are then processed using the in-house developed software XMAS, which outputs text files, where each row corresponds to a pixel position. Representative data from moissanite and an olive snail shell are presented to demonstrate data quality, collection, and analysis strategies.


Assuntos
Fluorescência , Minerais/química , Síncrotrons/estatística & dados numéricos , Difração de Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa