Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 275: 120171, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37196987

RESUMO

Congenital blindness leads to profound changes in electroencephalographic (EEG) resting state activity. A well-known consequence of congenital blindness in humans is the reduction of alpha activity which seems to go together with increased gamma activity during rest. These results have been interpreted as indicating a higher excitatory/inhibitory (E/I) ratio in visual cortex compared to normally sighted controls. Yet it is unknown whether the spectral profile of EEG during rest would recover if sight were restored. To test this question, the present study evaluated periodic and aperiodic components of the EEG resting state power spectrum. Previous research has linked the aperiodic components, which exhibit a power-law distribution and are operationalized as a linear fit of the spectrum in log-log space, to cortical E/I ratio. Moreover, by correcting for the aperiodic components from the power spectrum, a more valid estimate of the periodic activity is possible. Here we analyzed resting state EEG activity from two studies involving (1) 27 permanently congenitally blind adults (CB) and 27 age-matched normally sighted controls (MCB); (2) 38 individuals with reversed blindness due to bilateral, dense, congenital cataracts (CC) and 77 age-matched sighted controls (MCC). Based on a data driven approach, aperiodic components of the spectra were extracted for the low frequency (Lf-Slope 1.5 to 19.5 Hz) and high frequency (Hf-Slope 20 to 45 Hz) range. The Lf-Slope of the aperiodic component was significantly steeper (more negative slope), and the Hf-Slope of the aperiodic component was significantly flatter (less negative slope) in CB and CC participants compared to the typically sighted controls. Alpha power was significantly reduced, and gamma power was higher in the CB and the CC groups. These results suggest a sensitive period for the typical development of the spectral profile during rest and thus likely an irreversible change in the E/I ratio in visual cortex due to congenital blindness. We speculate that these changes are a consequence of impaired inhibitory circuits and imbalanced feedforward and feedback processing in early visual areas of individuals with a history of congenital blindness.


Assuntos
Catarata , Anormalidades do Olho , Córtex Visual , Adulto , Humanos , Cegueira/congênito , Eletroencefalografia , Transtornos da Visão
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1886): 20220339, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37545314

RESUMO

Previous studies have indicated that crossmodal visual predictions are instrumental in controlling early visual cortex activity. The exact time course and spatial precision of such crossmodal top-down influences on the visual cortex have been unknown. In the present study, participants were exposed to audiovisual combinations comprising one of two sounds and a Gabor patch either in the top left or in the bottom right visual field. Event-related potentials (ERPs) were recorded to these frequent crossmodal combinations (standards) as well as to trials in which the visual stimulus was omitted (omissions) or the visual and auditory stimuli were recombined (deviants). Standards and deviants elicited an ERP between 50 and 100 ms of opposite polarity known as the C1 effect commonly associated with retinotopic processing in early visual cortex. By contrast, a C1 effect was not observed in omission trials. Spatially specific omission and mismatch effects (deviants minus standards) started only later with a latency of 230 ms and 170 ms, respectively. These results suggest that crossmodal visual predictions control visual cortex activity in a spatially specific manner. However, visual predictions do not modulate visual cortex activity with the same timing as visual stimulation activates these areas but rather seem to involve distinct neural mechanisms. This article is part of the theme issue 'Decision and control processes in multisensory perception'.


Assuntos
Potenciais Evocados , Córtex Visual , Humanos , Estimulação Acústica , Estimulação Luminosa , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Percepção Auditiva/fisiologia
3.
Neuroimage Clin ; 38: 103375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36963312

RESUMO

Persistent visual impairments after congenital blindness due to dense bilateral cataracts have been attributed to altered visual cortex development within a sensitive period. Occipital alpha (8-14 Hz) oscillations were found to be reduced after congenital cataract reversal, while participants performed visual motion tasks. However, it has been unclear whether reduced alpha oscillations were task-specific, or linked to impaired visual behavior in cataract-reversed individuals. Here, we compared resting-state and stimulus-evoked alpha activity between individuals who had been treated for dense bilateral congenital cataracts (CC, n = 13, mean duration of blindness = 11.0 years) and age-matched, normally sighted individuals (SC, n = 13). We employed the visual impulse response function, adapted from VanRullen and MacDonald (2012), to test for the characteristic alpha response to visual white noise. Participants observed white noise stimuli changing in luminance with equal power at frequencies between 0 and 30 Hz. Compared to SC individuals, CC individuals demonstrated a reduced likelihood of exhibiting an evoked alpha response. Moreover, stimulus-evoked alpha power was reduced and correlated with a corresponding reduction of resting-state alpha power in the same CC individuals. Finally, CC individuals with an above-threshold evoked alpha peak had better visual acuity than CC individual without an evoked alpha peak. Since alpha oscillations have been linked to feedback communication, we suggest that the concurrent impairment in resting-state and stimulus-evoked alpha oscillations indicates an altered interaction of top-down and bottom-up processing in the visual hierarchy, which likely contributes to incomplete behavioral recovery in individuals who experienced transient congenital blindness.


Assuntos
Catarata , Córtex Visual , Humanos , Transtornos da Visão , Cegueira , Córtex Visual/diagnóstico por imagem , Catarata/congênito , Acuidade Visual , Percepção Visual/fisiologia , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa