Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769150

RESUMO

The aim of the experiment was to test the effect of an elevated level of glucocorticoids on the mouse hippocampal transcriptome after 12 h of treatment with corticosterone that was administered during an active phase of the circadian cycle. Additionally, we also tested the circadian changes in gene expression and the decay time of transcriptomic response to corticosterone. Gene expression was analyzed using microarrays. Obtained results show that transcriptomic responses to glucocorticoids are heterogeneous in terms of the decay time with some genes displaying persistent changes in expression during 9 h of rest. We have also found a considerable overlap between genes regulated by corticosterone and genes implicated previously in stress response. The examples of such genes are Acer2, Agt, Apod, Aqp4, Etnppl, Fabp7, Fam107a, Fjx1, Fmo2, Galnt15, Gjc2, Heph, Hes5, Htra1, Jdp2, Kif5a, Lfng, Lrg1, Mgp, Mt1, Pglyrp1, Pla2g3, Plin4, Pllp, Ptgds, Ptn, Slc2a1, Slco1c1, Sult1a1, Thbd and Txnip. This indicates that the applied model is a useful tool for the investigation of mechanisms underlying the stress response.


Assuntos
Corticosterona , Glucocorticoides , Camundongos , Animais , Corticosterona/farmacologia , Corticosterona/metabolismo , Glucocorticoides/metabolismo , Hipocampo/metabolismo , Perfilação da Expressão Gênica , Transcriptoma
2.
Int J Mol Sci ; 22(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34576090

RESUMO

Iron deficiency is the most common mammalian nutritional disorder. However, among mammalian species iron deficiency anemia (IDA), occurs regularly only in pigs. To cure IDA, piglets are routinely injected with high amounts of iron dextran (FeDex), which can lead to perturbations in iron homeostasis. Here, we evaluate the therapeutic efficacy of non-invasive supplementation with Sucrosomial iron (SI), a highly bioavailable iron supplement preventing IDA in humans and mice and various iron oxide nanoparticles (IONPs). Analysis of red blood cell indices and plasma iron parameters shows that not all iron preparations used in the study efficiently counteracted IDA comparable to FeDex-based supplementation. We found no signs of iron toxicity of any tested iron compounds, as evaluated based on the measurement of several toxicological markers that could indicate the occurrence of oxidative stress or inflammation. Neither SI nor IONPs increased hepcidin expression with alterations in ferroportin (FPN) protein level. Finally, the analysis of the piglet gut microbiota indicates the individual pattern of bacterial diversity across taxonomic levels, independent of the type of supplementation. In light of our results, SI but not IONPs used in the experiment emerges as a promising nutritional iron supplement, with a high potential to correct IDA in piglets.


Assuntos
Anemia Ferropriva/tratamento farmacológico , Suplementos Nutricionais , Compostos Férricos/administração & dosagem , Compostos Férricos/uso terapêutico , Nanopartículas Magnéticas de Óxido de Ferro/administração & dosagem , Nanopartículas Magnéticas de Óxido de Ferro/química , Administração Oral , Anemia Ferropriva/sangue , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Duodeno/metabolismo , Compostos Férricos/farmacologia , Compostos Ferrosos/uso terapêutico , Hepcidinas/sangue , Hepcidinas/genética , Masculino , Microbiota , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Suínos
3.
BMC Neurosci ; 15: 130, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25472829

RESUMO

BACKGROUND: In order to better understand the effects of social stress on the prefrontal cortex, we investigated gene expression in mice subjected to acute and repeated social encounters of different duration using microarrays. RESULTS: The most important finding was identification of hemoglobin genes (Hbb-b1, Hbb-b2, Hba-a1, Hba-a2, Beta-S) as potential markers of chronic social stress in mice. Expression of these genes was progressively increased in animals subjected to 8 and 13 days of repeated stress and was correlated with altered expression of Mgp (Mglap), Fbln1, 1500015O10Rik (Ecrg4), SLC16A10, and Mndal. Chronic stress increased also expression of Timp1 and Ppbp that are involved in reaction to vascular injury. Acute stress did not affect expression of hemoglobin genes but it altered expression of Fam107a (Drr1) and Agxt2l1 (Etnppl) that have been implicated in psychiatric diseases. CONCLUSIONS: The observed up-regulation of genes associated with vascular system and brain injury suggests that stressful social encounters may affect brain function through the stress-induced dysfunction of the vascular system.


Assuntos
Hemoglobinas/metabolismo , Córtex Pré-Frontal/metabolismo , Percepção Social , Estresse Psicológico/metabolismo , Doença Aguda , Animais , Peso Corporal , Cromatografia Líquida de Alta Pressão , Doença Crônica , Corticosterona/sangue , Modelos Animais de Doenças , Ingestão de Alimentos , Expressão Gênica , Masculino , Camundongos , Análise em Microsséries , Reação em Cadeia da Polimerase em Tempo Real
4.
BMC Neurosci ; 14: 144, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24225037

RESUMO

BACKGROUND: The effects of chronic treatment with tricyclic antidepressant (desipramine, DMI) on the hippocampal transcriptome in mice displaying high and low swim stress-induced analgesia (HA and LA lines) were studied. These mice displayed different depression-like behavioral responses to DMI: stress-sensitive HA animals responded to DMI, while LA animals did not. RESULTS: To investigate the effects of DMI treatment on gene expression profiling, whole-genome Illumina Expression BeadChip arrays and qPCR were used. Total RNA isolated from hippocampi was used. Expression profiling was then performed and data were analyzed bioinformatically to assess the influence of stress susceptibility-specific phenotypes on hippocampal transcriptomic responses to chronic DMI. DMI treatment affected the expression of 71 genes in HA mice and 41 genes in LA mice. We observed the upregulation of Igf2 and the genes involved in neurogenesis (HA: Sema3f, Ntng1, Gbx2, Efna5, and Rora; LA: Otx2, Rarb, and Drd1a) in both mouse lines. In HA mice, we observed the upregulation of genes involved in neurotransmitter transport, the termination of GABA and glycine activity (Slc6a11, Slc6a9), glutamate uptake (Slc17a6), and the downregulation of neuropeptide Y (Npy) and corticotropin releasing hormone-binding protein (Crhbp). In LA mice, we also observed the upregulation of other genes involved in neuroprotection (Ttr, Igfbp2, Prlr) and the downregulation of genes involved in calcium signaling and ion binding (Adcy1, Cckbr, Myl4, Slu7, Scrp1, Zfp330). CONCLUSIONS: Several antidepressant treatment responses are similar in individuals with different sensitivities to stress, including the upregulation of Igf2 and the genes involved in neurogenesis. However, the findings also reveal that many responses to antidepressant treatments, involving the action of individual genes engaged in neurogenesis, neurotransmitter transport and neuroprotection, depend on constitutive hippocampal transcriptomic profiles and might be genotype dependent. The results suggest that, when and if this becomes feasible, antidepressant treatment should take into consideration individual sensitivity to stress.


Assuntos
Antidepressivos Tricíclicos/farmacologia , Hipocampo/efeitos dos fármacos , Estresse Psicológico/genética , Transcriptoma/efeitos dos fármacos , Animais , Desipramina/farmacologia , Hipocampo/fisiologia , Hibridização In Situ , Masculino , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase em Tempo Real
5.
Brain Sci ; 12(6)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35741684

RESUMO

Many research methods applied in molecular neuroscience require the collection of hippocampal samples, but a still poorly recognized problem is contamination with the choroid plexus during brain dissection. Because of a distinct pattern of gene expression, its inclusion in brain samples can obscure or even confound conclusions drawn from molecular studies. Therefore, we tested our dissection method designed for removal of tissue contamination using expression of the transthyretin gene (Ttr) as a marker of the choroid plexus. Additionally, we also validated dissection of the entire hippocampus into its dorsal, intermediate and ventral subdivisions using the expression of Trhr and Lct genes as molecular markers of anatomical subdivisions. The PCR analysis showed that Ttr is expressed at a residual level in hippocampal samples that display an mRNA level several hundred lower than the adjacent control tissue colocalized with the choroid plexus. This indicates that the applied method for dissecting the hippocampus from a fresh brain allows for replicable removal of the majority of choroid plexus from hippocampal samples. In turn, differences in expression of Lct and Trhr confirmed the proper dissection of dorsal, intermediate and ventral subdivisions from fresh brain tissue. Therefore, a special emphasis on the removal of tissue contamination and avoidance of tissue distortions makes our protocol especially suitable for molecular experiments performed either on the entire hippocampus or its subdivisions.

6.
Artigo em Inglês | MEDLINE | ID: mdl-35405299

RESUMO

Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Canais de Cátion TRPM , Animais , Encéfalo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Serina Peptidase 1 de Requerimento de Alta Temperatura A/genética , Serina Peptidase 1 de Requerimento de Alta Temperatura A/metabolismo , Humanos , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Transtornos de Estresse Pós-Traumáticos/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Transcriptoma
7.
Int J Dev Biol ; 63(3-4-5): 217-222, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31058298

RESUMO

Since the birth of the first baby conceived by in vitro fertilization (IVF), assisted reproductive technologies (ART) have been constantly evolving to accomodate needs of a growing number of infertile couples. Rapidly developing ART procedures are directly applied for human infertility treatment without prior long-term safety evaluation. Although the majority of ART babies are healthy at birth, a comprehensive assessment of the long-term risks associated with ART is still lacking. An increased risk of epigenetic errors has been associated with the use of ART, which may contribute to the onset of civilization disease later in adolescence/adulthood and/or in subsequent generations. Therefore, our investigations should not focus on (or be limited to) the occurrence of a few very rare imprinting disorders in ART children, which might be associated with parental age and/or the use of ART, but on the possibly increased disease susceptibilities later in life and their potential transmission to the subsequent generations. Retrospective studies do not offer exhaustive information on long-term consequences of ART. Animal models are useful tools to study long-term effects including transgenerational ones and the epigenetic risk of a given ART procedure, which could then be translated to the human context. The final goal is the establishment of common guidelines for assessing the epigenetic risk of ART in humans, which will contribute to two key objectives of the Horizon2020 programme, i.e. to improve our understanding of the causes and mechanisms underlying health and disease, and to improve our ability to monitor health and prevent/manage disease.


Assuntos
Epigênese Genética , Técnicas de Reprodução Assistida/efeitos adversos , Animais , Feminino , Humanos , Placenta/metabolismo , Gravidez , Técnicas de Reprodução Assistida/tendências , Fatores de Risco
8.
J Cannabis Res ; 1(1): 4, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-33526099

RESUMO

BACKGROUND: Cannabis, cannabinoids and endocannabinoids are heavily investigated topics with many articles published every year. We aimed to identify the 100 most cited manuscripts among the vast literature and analyze their contents. METHODS: Web of Science (WoS) Core Collection was searched to identify the 100 most cited relevant manuscripts, which were analyzed with reference to (1) authorship, (2) institution, (3) country, (4) document type, (5) journal, (6) publication year, (7) WoS category, and (8) citation count. Semantic content and citation data of the manuscripts were analyzed with VOSviewer. RESULTS: The most cited manuscripts were published between 1986 and 2016, with the majority being published in the 2000s (n = 51). The number of citations for the top 100 articles ranged from 469 to 3651, with a median citation count of 635.5. The most prolific authors were Vincenzo Di Marzo (n = 11) and Daniele Piomelli (n = 11). The major contributing countries were USA (n = 49), Italy (n = 22), UK (n = 19), and France (n = 11). The most prolific institutions were University of California (n = 14), National Research Council of Italy (n = 12) and National Institutes of Health USA (n = 12). The manuscripts consisted of original articles (n = 75), reviews (n = 24) and a note (n = 1). The most dominant journal was Nature (n = 15). The major WoS categories associated were Multidisciplinary sciences (n = 31), Neurosciences (n = 20), Pharmacology / Pharmacy (n = 16), and General / Internal Medicine (n = 11). CONCLUSIONS: The top-ranked manuscripts among the 100 were concerning analgesia, weight loss, long-term potentiation, depolarization-induced suppression of inhibition, opiates and other topics. Cannabinoid type 1 (CB1) receptor was studied by more of the top 100 papers in comparison to cannabinoid type 2 (CB2) receptor. The most frequently mentioned chemicals in these publications were 2-arachidonoylglycerol, tetrahydrocannabinol, and anandamide. Together, these manuscripts comprise the most highly cited publications in the topic, literally the molecular neuroscience at its "high".

9.
Artigo em Inglês | MEDLINE | ID: mdl-29180230

RESUMO

The identification of key genes in transcriptomic data constitutes a huge challenge. Our review of microarray reports revealed 88 genes whose transcription is consistently regulated by glucocorticoids (GCs), such as cortisol, corticosterone and dexamethasone, in the brain. Replicable transcriptomic data were combined with biochemical and physiological data to create an integrated view of the effects induced by GCs. The most frequently reported genes were Errfi1 and Ddit4. Their up-regulation was associated with the altered transcription of genes regulating growth factor and mTORC1 signaling (Gab1, Tsc22d3, Dusp1, Ndrg2, Ppp5c and Sesn1) and progression of the cell cycle (Ccnd1, Cdkn1a and Cables1). The GC-induced reprogramming of cell function involves changes in the mRNA level of genes responsible for the regulation of transcription (Klf9, Bcl6, Klf15, Tle3, Cxxc5, Litaf, Tle4, Jun, Sox4, Sox2, Sox9, Irf1, Sall2, Nfkbia and Id1) and the selective degradation of mRNA (Tob2). Other genes are involved in the regulation of metabolism (Gpd1, Aldoc and Pdk4), actin cytoskeleton (Myh2, Nedd9, Mical2, Rhou, Arl4d, Osbpl3, Arhgef3, Sdc4, Rdx, Wipf3, Chst1 and Hepacam), autophagy (Eva1a and Plekhf1), vesicular transport (Rhob, Ehd3, Vps37b and Scamp2), gap junctions (Gjb6), immune response (Tiparp, Mertk, Lyve1 and Il6r), signaling mediated by thyroid hormones (Thra and Sult1a1), calcium (Calm2), adrenaline/noradrenaline (Adcy9 and Adra1d), neuropeptide Y (Npy1r) and histamine (Hdc). GCs also affected genes involved in the synthesis of polyamines (Azin1) and taurine (Cdo1). The actions of GCs are restrained by feedback mechanisms depending on the transcription of Sgk1, Fkbp5 and Nr3c1. A side effect induced by GCs is increased production of reactive oxygen species. Available data show that the brain's response to GCs is part of an emergency mode characterized by inactivation of non-core activities, restrained inflammation, restriction of investments (growth), improved efficiency of energy production and the removal of unnecessary or malfunctioning cellular components to conserve energy and maintain nutrient supply during the stress response.


Assuntos
Encéfalo/metabolismo , Expressão Gênica , Glucocorticoides/metabolismo , Animais , Humanos , Transcriptoma
10.
Front Aging Neurosci ; 10: 04, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441009

RESUMO

Alzheimer's disease (AD) is the most common cause of progressive dementia in the elderly. It is characterized by a progressive and irreversible loss of cognitive abilities and formation of senile plaques, composed mainly of amyloid ß (Aß), and neurofibrillary tangles (NFTs), composed of tau protein, in the hippocampus and cortex of afflicted humans. In brains of AD patients the metabolism of Aß is dysregulated, which leads to the accumulation and aggregation of Aß. Metabolism of Aß and tau proteins is crucially influenced by autophagy. Autophagy is a lysosome-dependent, homeostatic process, in which organelles and proteins are degraded and recycled into energy. Thus, dysfunction of autophagy is suggested to lead to the accretion of noxious proteins in the AD brain. In the present review, we describe the process of autophagy and its importance in AD. Additionally, we discuss mechanisms and genes linking autophagy and AD, i.e., the mTOR pathway, neuroinflammation, endocannabinoid system, ATG7, BCL2, BECN1, CDK5, CLU, CTSD, FOXO1, GFAP, ITPR1, MAPT, PSEN1, SNCA, UBQLN1, and UCHL1. We also present pharmacological agents acting via modulation of autophagy that may show promise in AD therapy. This review updates our knowledge on autophagy mechanisms proposing novel therapeutic targets for the treatment of AD.

11.
Front Aging Neurosci ; 10: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29483867

RESUMO

Dementia is a clinical syndrome wherein gradual decline of mental and cognitive capabilities of an afflicted person takes place. Dementia is associated with various risk factors and conditions such as insufficient cerebral blood supply, toxin exposure, mitochondrial dysfunction, oxidative damage, and often coexisting with some neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Although there are well-established (semi-)synthetic drugs currently used for the management of AD and AD-associated dementia, most of them have several adverse effects. Thus, traditional medicine provides various plant-derived lead molecules that may be useful for further medical research. Herein we review the worldwide use of ethnomedicinal plants in dementia treatment. We have explored a number of recognized databases by using keywords and phrases such as "dementia", "Alzheimer's," "traditional medicine," "ethnopharmacology," "ethnobotany," "herbs," "medicinal plants" or other relevant terms, and summarized 90 medicinal plants that are traditionally used to treat dementia. Moreover, we highlight five medicinal plants or plant genera of prime importance and discuss the physiological effects, as well as the mechanism of action of their major bioactive compounds. Furthermore, the link between mitochondrial dysfunction and dementia is also discussed. We conclude that several drugs of plant origin may serve as promising therapeutics for the treatment of dementia, however, pivotal evidence for their therapeutic efficacy in advanced clinical studies is still lacking.

12.
Artigo em Inglês | MEDLINE | ID: mdl-26436761

RESUMO

The neurophysiological link between neuropathic pain and depression remains unknown despite evident high comorbidity of these two disorders. However, there is convincing evidence that genotype plays a role in both pain and depression. Using various types of genetic analysis - population genetics, cytogenetics and molecular technologies - specific genes have been implicated in mediating almost all aspects of nociception and mood disorders. The current review attempts to identify specific genes and epigenetic mechanisms common to both disorders. It is concluded that external and internal factors (inflammation, stress, gender, etc.) that contribute to the pathologies may do so through epigenetic mechanisms that may affect expression of these particular genes. The possible involvement of epigenetic regulation in pain and psychiatric disorders suggests that treatments targeting epigenetic mechanisms that mediate adverse life events should be considered.


Assuntos
Epigênese Genética/genética , Transtornos do Humor/genética , Neuralgia/genética , Humanos , Transtornos do Humor/complicações , Neuralgia/complicações
13.
PLoS One ; 10(11): e0142195, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26556046

RESUMO

Psychogenic stress contributes to the formation of brain pathology. Using gene expression microarrays, we analyzed the hippocampal transcriptome of mice subjected to acute and chronic social stress of different duration. The longest period of social stress altered the expression of the highest number of genes and most of the stress-induced changes in transcription were reversible after 5 days of rest. Chronic stress affected genes involved in the functioning of the vascular system (Alas2, Hbb-b1, Hba-a2, Hba-a1), injury response (Vwf, Mgp, Cfh, Fbln5, Col3a1, Ctgf) and inflammation (S100a8, S100a9, Ctla2a, Ctla2b, Lcn2, Lrg1, Rsad2, Isg20). The results suggest that stress may affect brain functions through the stress-induced dysfunction of the vascular system. An important issue raised in our work is also the risk of the contamination of brain tissue samples with choroid plexus. Such contamination would result in a consistent up- or down-regulation of genes, such as Ttr, Igf2, Igfbp2, Prlr, Enpp2, Sostdc1, 1500015O10RIK (Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1. Our study suggests that some of the previously reported, supposedly specific changes in hippocampal gene expression, may be a result of the inclusion of choroid plexus in the hippocampal samples.


Assuntos
Hipocampo/metabolismo , Estresse Psicológico/genética , Transcriptoma , Doença Aguda , Animais , Plexo Corióideo/metabolismo , Doença Crônica , Masculino , Camundongos , Família Multigênica , Tamanho do Órgão/genética , Comportamento Social , Baço/anatomia & histologia , Timo/anatomia & histologia , Fatores de Tempo
14.
Pharmacol Biochem Behav ; 139(Pt A): 27-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26455281

RESUMO

OBJECTIVE: Animal models provide opportunity to study neurobiological aspects of human alcoholism. Changes in gene expression have been implicated in mediating brain functions, including reward system and addiction. The current study aimed to identify genes that may underlie differential ethanol preference in Warsaw High Preferring (WHP) and Warsaw Low Preferring (WLP) rats. METHODS: Microarray analysis comparing gene expression in nucleus accumbens (NAc), hippocampus (HP) and medial prefrontal cortex (mPFC) was performed in male WHP and WLP rats bred for differences in ethanol preference. RESULTS: Differential and stable between biological repeats expression of 345, 254 and 129 transcripts in NAc, HP and mPFC was detected. Identified genes and processes included known mediators of ethanol response (Mx2, Fam111a, Itpr1, Gabra4, Agtr1a, LTP/LTD, renin-angiotensin signaling pathway), toxicity (Sult1c2a, Ces1, inflammatory response), as well as genes involved in regulation of important addiction-related brain systems such as dopamine, tachykinin or acetylcholine (Gng7, Tac4, Slc5a7). CONCLUSIONS: The identified candidate genes may underlie differential ethanol preference in an animal model of alcoholism. COMMENT: Names of genes are written in italics, while names of proteins are written in standard font. Names of human genes/proteins are written in all capital letters. Names of rodent genes/proteins are written in capital letter followed by small letters.


Assuntos
Alcoolismo/genética , Perfilação da Expressão Gênica , Hipocampo/metabolismo , Núcleo Accumbens/metabolismo , Córtex Pré-Frontal/metabolismo , Animais , Comportamento de Escolha , Modelos Animais de Doenças , Expressão Gênica/genética , Predisposição Genética para Doença/genética , Masculino , Ratos , Ratos Endogâmicos
15.
Brain Res Bull ; 98: 76-92, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23906660

RESUMO

Recent findings in epigenetics shed new light on the regulation of gene expression in the central nervous system (CNS) during stress. The most frequently studied epigenetic mechanisms are DNA methylation, histone modifications and microRNA activity. These mechanisms stably determine cell phenotype but can also be responsible for dynamic molecular adaptations of the CNS to stressors. The limbic-hypothalamic-pituitary-adrenal axis (LHPA) is the primary circuit that initiates, regulates and terminates a stress response. The same brain areas that control stress also react to stress dynamically and with long-term consequences. One of the biological processes evoking potent adaptive changes in the CNS such as changes in behavior, gene activity or synaptic plasticity in the hippocampus is psychogenic stress. This review summarizes the current data regarding the epigenetic basis of molecular adaptations in the brain including genome-wide epigenetic changes of DNA methylation and particular genes involved in epigenetic responses that participate in the brain response to chronic psychogenic stressors. It is concluded that specific epigenetic mechanisms in the CNS are involved in the stress response.


Assuntos
Encéfalo/fisiologia , Epigênese Genética , Expressão Gênica , Estresse Fisiológico/fisiologia , Animais , Metilação de DNA
16.
J Mol Neurosci ; 50(1): 33-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22836882

RESUMO

There is increasing evidence that depression derives from the impact of environmental pressure on genetically susceptible individuals. We analyzed the effects of chronic mild stress (CMS) on prefrontal cortex transcriptome of two strains of mice bred for high (HA)and low (LA) swim stress-induced analgesia that differ in basal transcriptomic profiles and depression-like behaviors. We found that CMS affected 96 and 92 genes in HA and LA mice, respectively. Among genes with the same expression pattern in both strains after CMS, we observed robust upregulation of Ttr gene coding transthyretin involved in amyloidosis, seizures, stroke-like episodes, or dementia. Strain-specific HA transcriptome affected by CMS was associated with deregulation of genes involved in insulin secretion (Acvr1c, Nnat, and Pfkm), neuropeptide hormone activity (Nts and Trh), and dopamine receptor mediated signaling pathway (Clic6, Drd1a, and Ppp1r1b). LA transcriptome affected by CMS was associated with genes involved in behavioral response to stimulus (Fcer1g, Rasd2, S100a8, S100a9, Crhr1, Grm5, and Prkcc), immune effector processes (Fcer1g, Mpo, and Igh-VJ558), diacylglycerol binding (Rasgrp1, Dgke, Dgkg, and Prkcc), and long-term depression (Crhr1, Grm5, and Prkcc) and/or coding elements of dendrites (Crmp1, Cntnap4, and Prkcc) and myelin proteins (Gpm6a, Mal, and Mog). The results indicate significant contribution of genetic background to differences in stress response gene expression in the mouse prefrontal cortex.


Assuntos
Córtex Pré-Frontal/metabolismo , Estresse Psicológico/genética , Transcriptoma , Animais , Expressão Gênica , Camundongos , Camundongos Endogâmicos , Esforço Físico , Estresse Fisiológico/genética , Estresse Psicológico/metabolismo
17.
J Mol Neurosci ; 47(1): 101-12, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22173874

RESUMO

Stress responsiveness, including pain sensitivity and stress-induced analgesia (SIA), depends on genotype and, partially, is mediated by hippocampus. The present study examined differences in constitutive gene expression in hippocampus in lines of mice bred for high (HA) and low (LA) swim SIA. Between the lines, we found 1.5-fold or greater differences in expression of 205 genes in the hippocampus in nonstressed animals. The identity of these genes indicates that selective breeding for swim SIA affected many aspects of hippocampal neurons physiology, including metabolism, structural changes, and cellular signaling. Genes involved in calcium signaling pathway, including Slc8a1, Slc8a2, Prkcc, and Ptk2b, were upregulated in LA mice. In HA mice, robust upregulation of genes coding some transcription factors (Klf5) or receptors for neurotensin (Ntsr2) and GABA (Gabard) suggests the genetic basis for a novel mechanism of the non-opioid type of SIA in HA animals. Additional groups of differentially expressed genes represented functional networks involved in carbohydrate metabolism, gene expression regulation, and molecular transport. Our data indicate that selection for a single and very specific stress response trait, swim SIA, alters hippocampal gene expression. The results suggest that individual stress responsiveness may be associated with characteristics of the constitutive hippocampal transcriptome.


Assuntos
Hipocampo/fisiologia , Limiar da Dor/fisiologia , Distúrbios Somatossensoriais/genética , Estresse Psicológico/genética , Transcriptoma/fisiologia , Animais , Feminino , Masculino , Camundongos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa