Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genet Med ; 26(1): 100980, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37688462

RESUMO

PURPOSE: Genetic counseling (GC) is standard of care in genetic cancer risk assessment (GCRA). A rigorous assessment of the data reported from published studies is crucial to ensure the evidence-based implementation of GC. METHODS: We conducted a systematic review and meta-analysis of 17 patient-reported and health-services-related outcomes associated with pre- and post-test GC in GCRA in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology. RESULTS: Twenty-five of 5393 screened articles met inclusion criteria. No articles reporting post-test GC outcomes met inclusion criteria. For patient-reported outcomes, pre-test GC significantly decreased worry, increased knowledge, and decreased perceived risk but did not significantly affect patient anxiety, depression, decisional conflict, satisfaction, or intent to pursue genetic testing. For health-services outcomes, pre-test GC increased correct genetic test ordering, reduced inappropriate services, increased spousal support for genetic testing, and expedited care delivery but did not consistently improve cancer prevention behaviors nor lead to accurate risk assessment. The GRADE certainty in the evidence was very low or low. No included studies elucidated GC effect on mortality, cascade testing, cost-effectiveness, care coordination, shared decision making, or patient time burden. CONCLUSION: The true impact of GC on relevant outcomes is not known low quality or absent evidence. Although a meta-analysis found that pre-test GC had beneficial effects on knowledge, worry, and risk perception, the certainty of this evidence was low according to GRADE methodology. Further studies are needed to support the evidence-based application of GC in GCRA.


Assuntos
Aconselhamento Genético , Neoplasias , Humanos , Aconselhamento Genético/psicologia , Neoplasias/diagnóstico , Neoplasias/genética , Testes Genéticos
2.
J Neurooncol ; 168(2): 215-224, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38755519

RESUMO

PURPOSE: Clinical sequencing of tumor DNA is necessary to render an integrated diagnosis and select therapy for children with primary central nervous system (CNS) tumors, but neurosurgical biopsy is not without risk. In this study, we describe cell-free DNA (cfDNA) in blood and cerebrospinal fluid (CSF) as sources for "liquid biopsy" in pediatric brain tumors. METHODS: CSF samples were collected by lumbar puncture, ventriculostomy, or surgery from pediatric patients with CNS tumors. Following extraction, CSF-derived cfDNA was sequenced using UW-OncoPlex™, a clinically validated next-generation sequencing platform. CSF-derived cfDNA results and paired plasma and tumor samples concordance was also evaluated. RESULTS: Seventeen CSF samples were obtained from 15 pediatric patients with primary CNS tumors. Tumor types included medulloblastoma (n = 7), atypical teratoid/rhabdoid tumor (n = 2), diffuse midline glioma with H3 K27 alteration (n = 4), pilocytic astrocytoma (n = 1), and pleomorphic xanthoastrocytoma (n = 1). CSF-derived cfDNA was detected in 9/17 (53%) of samples, and sufficient for sequencing in 8/10 (80%) of extracted samples. All somatic mutations and copy-number variants were also detected in matched tumor tissue, and tumor-derived cfDNA was absent in plasma samples and controls. Tumor-derived cfDNA alterations were detected in the absence of cytological evidence of malignant cells in as little as 200 µl of CSF. Several clinically relevant alterations, including a KIAA1549::BRAF fusion were detected. CONCLUSIONS: Clinically relevant genomic alterations are detectable using CSF-derived cfDNA across a range of pediatric brain tumors. Next-generation sequencing platforms are capable of producing a high yield of DNA alterations with 100% concordance rate with tissue analysis.


Assuntos
Biomarcadores Tumorais , Neoplasias Encefálicas , DNA Tumoral Circulante , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Criança , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/líquido cefalorraquidiano , Neoplasias Encefálicas/diagnóstico , Masculino , Feminino , Pré-Escolar , Adolescente , Lactente , DNA Tumoral Circulante/líquido cefalorraquidiano , DNA Tumoral Circulante/genética , DNA Tumoral Circulante/sangue , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/líquido cefalorraquidiano , Ácidos Nucleicos Livres/líquido cefalorraquidiano , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/sangue , Biópsia Líquida/métodos , Mutação
3.
Front Oncol ; 14: 1338022, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511139

RESUMO

Purpose: Somatic molecular profiling of pediatric brain tumors aids with the diagnosis and treatment of patients with a variety of high- and low-grade central nervous system neoplasms. Here, we report follow-up targeted germline evaluation for patients with possible germline variants following tumor only testing in the initial year in which somatic molecular testing was implemented at a single institution. Patients and Methods: Somatic testing was completed for all tumors of the central nervous system (CNS) undergoing diagnostic workup at Seattle Children's Hospital during the study period of November 2015 to November 2016. Sequencing was performed in a College of American Pathologists-accredited, Clinical Laboratory Improvements Amendments-certified laboratory using UW-OncoPlex™ assay (version 5), a DNA-based targeted next generation sequencing panel validated to detect genetic alterations in 262 cancer-related genes. We tracked subsequent clinical evaluation and testing on a subgroup of this cohort found to have potential germline variants of interest. Results: Molecular sequencing of 88 patients' tumors identified 31 patients with variants that warranted consideration of germline testing. To date, 19 (61%) patients have been tested. Testing confirmed germline variants for ten patients (31% of those identified for testing), one with two germline variants (NF1 and mosaic TP53). Eight (26%) patients died before germline testing was sent. One patient (13%) has not yet had testing. Conclusion: Clinically validated molecular profiling of pediatric brain tumors identifies patients who warrant further germline evaluation. Despite this, only a subset of these patients underwent the indicated confirmatory sequencing. Further work is needed to identify barriers and facilitators to this testing, including the role of genetic counseling and consideration of upfront paired somatic-germline testing.

5.
Am J Clin Pathol ; 146(2): 221-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27473740

RESUMO

OBJECTIVES: To characterize error rates for genetic test orders between medical specialties and in different settings by examining detailed order information. METHODS: We performed a retrospective analysis of a detailed utilization management case database, comprising 2.5 years of data and almost 1,400 genetic test orders. After review by multiple reviewers, we categorized order modifications and cancellations, quantified rates of positive results and order errors, and compared genetics with nongenetics providers and inpatient with outpatient orders. RESULTS: High cost or problems with preauthorization were the most common reasons for modification and cancellation, respectively. The cancellation rate for nongenetics providers was three times the rate for geneticists, but abnormal result rates were similar between the two groups. The approval rate for inpatient orders was not significantly lower than outpatient orders, and abnormal result rates were similar for these two groups as well. Order error rates were approximately 8% among tests recommended by genetics providers in the inpatient setting, and tests ordered or recommended by nongeneticists had error rates near 5% in both inpatient and outpatient settings. CONCLUSIONS: Clinicians without specialty training in genetics make genetic test order errors at a significantly higher rate than geneticists. A laboratory utilization management program prevents these order errors from becoming diagnostic errors and reaching the patient.


Assuntos
Técnicas Genéticas , Erros Médicos/prevenção & controle , Garantia da Qualidade dos Cuidados de Saúde/métodos , Humanos , Sistemas de Registro de Ordens Médicas , Estudos Retrospectivos
6.
Front Psychiatry ; 2: 3, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21556273

RESUMO

Although there is clear evidence that low verbal ability is a risk factor for conduct disorder (CD), some researchers have questioned whether this association is due to the common comorbidity between attention-deficit/hyperactivity disorder (ADHD) and CD. The present study examined the association among verbal ability, ADHD, and CD in a genetically informative sample in order to examine the role of genes and/or environmental influences shared in common with ADHD on the covariation between verbal ability and CD. Participants were 2744 adolescents from the Center for Antisocial Drug Dependence (CADD), and included 360 monozygotic (MZ) female twin pairs, 221 dizygotic (DZ) female twin pairs, 297 MZ male twin pairs, 220 DZ male twin pairs, and 274 opposite-sex DZ twin pairs. The Diagnostic Interview Schedule for Children (DISC-IV) was used to assess lifetime symptoms of ADHD and CD. Verbal ability was assessed via the Vocabulary subtest of the Wechsler Adult Intelligence Scale III (WAIS-III) for individuals over the age of 16 and the Vocabulary subtest of the Wechsler Intelligence Scale for Children III (WISC-III) for individuals under the age of 16. There was a small but significant negative covariance between verbal ability and CD and between verbal ability and ADHD. Results also suggest that the covariation between verbal ability and CD is due to influences shared in common with ADHD.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa