Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Appl Clin Med Phys ; 24(8): e13990, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37031363

RESUMO

BACKGROUND: Quality assurance measurement of IMRT/VMAT treatment plans is resource intensive, and other more efficient methods to achieve the same confidence are desirable. PURPOSE: We aimed to analyze treatment plans in the context of the treatment planning systems that created them, in order to predict which ones will fail a standard quality assurance measurement. To do so, we sought to create a tool external to the treatment planning system that could analyze a set of MLC positions and provide information that could be used to calculate various evaluation metrics. METHODS: The tool was created in Python to read in DICOM plan files and determine the beam fluence fraction incident on each of seven different zones, each classified based on the RayStation MLC model. The fractions, termed grid point fractions, were validated by analyzing simple test plans. The average grid point fractions, over all control points for 46 plans were then computed. These values were then compared with gamma analysis pass percentages and median dose differences to determine if any significant correlations existed. RESULTS: Significant correlation was found between the grid point fraction metrics and median dose differences, but not with gamma analysis pass percentages. Correlations were positive or negative, suggesting differing model parameter value sensitivities, as well as potential insight into the treatment planning system dose model. CONCLUSIONS: By decomposing MLC control points into different transmission zones, it is possible to create a metric that predicts whether the analyzed plan will pass a quality assurance measurement from a dose calculation accuracy standpoint. The tool and metrics developed in this work have potential applications in comparing clinical beam models or identifying their weak points. Implementing the tool within a treatment planning system would also provide more potential plan optimization parameters.


Assuntos
Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Modelos Teóricos , Benchmarking , Imagens de Fantasmas , Dosagem Radioterapêutica
2.
IEEE Trans Vis Comput Graph ; 30(1): 858-868, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871051

RESUMO

Data visualization has the power to revolutionize sports. For example, the rise of shot maps has changed basketball strategy by visually illustrating where "good/bad" shots are taken from. As a result, professional basketball teams today take shots from very different positions on the court than they did 20 years ago. Although the shot map has transformed many facets of the game, there is still much room for improvement to support richer and more complex analytical tasks. More specifically, we believe that the lack of sufficient interactivity to support various analytical queries and the inability to visually compare differences across situations are significant limitations of current shot maps. To address these limitations and showcase new possibilities, we designed and developed HoopInSight, an interactive visualization system that centers around a novel spatial comparison visual technique, enhancing the capabilities of shot maps in basketball analytics. This article presents the system, with a focus on our proposed visual technique and its accompanying interactions, all designed to promote comparison of two different scenarios. Furthermore, we provide reflections on and a discussion of relevant issues, including considerations for designing spatial comparison techniques, the scalability and transferability of this approach, and the benefits and pitfalls of designing as domain experts.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38416614

RESUMO

Application developers frequently augment their code to produce event logs of specific operations performed by their users. Subsequent analysis of these event logs can help provide insight about the users' behavior relative to its intended use. The analysis process typically includes both event organization and pattern discovery activities. However, most existing visual analytics systems for interaction log analysis excel at supporting pattern discovery and overlook the importance of flexible event organization. This omission limits the practical application of these systems. Therefore, we developed a novel visual analytics system called IntiVisor that implements the entire end-to-end interaction analysis approach. An evaluation of the system with interaction data from four visualization applications showed the value and importance of supporting event organization in interaction log analysis.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37339040

RESUMO

Data visualization and journalism are deeply connected. From early infographics to recent data-driven storytelling, visualization has become an integrated part of contemporary journalism, primarily as a communication artifact to inform the general public. Data journalism, harnessing the power of data visualization, has emerged as a bridge between the growing volume of data and our society. Visualization research that centers around data storytelling has sought to understand and facilitate such journalistic endeavors. However, a recent metamorphosis in journalism has brought broader challenges and opportunities that extend beyond mere communication of data. We present this article to enhance our understanding of such transformations and thus broaden visualization research's scope and practical contribution to this evolving field. We first survey recent significant shifts, emerging challenges, and computational practices in journalism. We then summarize six roles of computing in journalism and their implications. Based on these implications, we provide propositions for visualization research concerning each role. Ultimately, by mapping the roles and propositions onto a proposed ecological model and contextualizing existing visualization research, we surface seven general topics and a series of research agendas that can guide future visualization research at this intersection.

5.
IEEE Trans Vis Comput Graph ; 28(1): 1128-1138, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34587049

RESUMO

It has been widely suggested that a key goal of visualization systems is to assist decision making, but is this true? We conduct a critical investigation on whether the activity of decision making is indeed central to the visualization domain. By approaching decision making as a user task, we explore the degree to which decision tasks are evident in visualization research and user studies. Our analysis suggests that decision tasks are not commonly found in current visualization task taxonomies and that the visualization field has yet to leverage guidance from decision theory domains on how to study such tasks. We further found that the majority of visualizations addressing decision making were not evaluated based on their ability to assist decision tasks. Finally, to help expand the impact of visual analytics in organizational as well as casual decision making activities, we initiate a research agenda on how decision making assistance could be elevated throughout visualization research.

6.
Radiat Res ; 197(6): 650-654, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35258625

RESUMO

Irradiation protocols for murine experiments often use standardized dose rate estimates for calculating dose delivered, regardless of physical variations between mouse subjects. This work sought to determine the significance of mouse size on absorbed dose. Five mouse-like phantoms of various sizes based on the mouse whole-body (MOBY) model were 3D printed. The phantoms were placed in an X-Rad320 biological irradiator and a standard irradiation protocol was used to deliver dose. Dose was measured using thermoluminescent dosimeter (TLD) microcubes inside each phantom, and the relative readings were used to calculate output factors (OFs), normalized to the phantom of median volume. Additionally, the OF for each mouse was simulated in Monte Carlo N-Particle (MCNP) code. For both the TLD measurements and MCNP simulations, the OF for each mouse was determined by both experiments and calculations to be unity within the relative standard uncertainties (k = 1). This work supports comparing results across various studies using the X-Rad320 irradiator without need for corrections based on mouse size.


Assuntos
Dosimetria Termoluminescente , Animais , Camundongos , Método de Monte Carlo , Imagens de Fantasmas , Dosimetria Termoluminescente/métodos , Incerteza
7.
IEEE Trans Vis Comput Graph ; 27(8): 3519-3533, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32149639

RESUMO

Multimodal interfaces that combine direct manipulation and natural language have shown great promise for data visualization. Such multimodal interfaces allow people to stay in the flow of their visual exploration by leveraging the strengths of one modality to complement the weaknesses of others. In this article, we introduce an approach that interweaves multimodal interaction combining direct manipulation and natural language with flexible unit visualizations. We employ the proposed approach in a proof-of-concept system, DataBreeze. Coupling pen, touch, and speech-based multimodal interaction with flexible unit visualizations, DataBreeze allows people to create and interact with both systematically bound (e.g., scatterplots, unit column charts) and manually customized views, enabling a novel visual data exploration experience. We describe our design process along with DataBreeze's interface and interactions, delineating specific aspects of the design that empower the synergistic use of multiple modalities. We also present a preliminary user study with DataBreeze, highlighting the data exploration patterns that participants employed. Finally, reflecting on our design process and preliminary user study, we discuss future research directions.

8.
IEEE Trans Vis Comput Graph ; 27(2): 369-379, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33048704

RESUMO

Natural language interfaces (NLls) have shown great promise for visual data analysis, allowing people to flexibly specify and interact with visualizations. However, developing visualization NLIs remains a challenging task, requiring low-level implementation of natural language processing (NLP) techniques as well as knowledge of visual analytic tasks and visualization design. We present NL4DV, a toolkit for natural language-driven data visualization. NL4DV is a Python package that takes as input a tabular dataset and a natural language query about that dataset. In response, the toolkit returns an analytic specification modeled as a JSON object containing data attributes, analytic tasks, and a list of Vega-Lite specifications relevant to the input query. In doing so, NL4DV aids visualization developers who may not have a background in NLP, enabling them to create new visualization NLIs or incorporate natural language input within their existing systems. We demonstrate NL4DV's usage and capabilities through four examples: 1) rendering visualizations using natural language in a Jupyter notebook, 2) developing a NLI to specify and edit Vega-Lite charts, 3) recreating data ambiguity widgets from the DataTone system, and 4) incorporating speech input to create a multimodal visualization system.

9.
IEEE Trans Vis Comput Graph ; 16(6): 999-1008, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20975137

RESUMO

Although previous research has suggested that examining the interplay between internal and external representations can benefit our understanding of the role of information visualization (InfoVis) in human cognitive activities, there has been little work detailing the nature of internal representations, the relationship between internal and external representations and how interaction is related to these representations. In this paper, we identify and illustrate a specific kind of internal representation, mental models, and outline the high-level relationships between mental models and external visualizations. We present a top-down perspective of reasoning as model construction and simulation, and discuss the role of visualization in model based reasoning. From this perspective, interaction can be understood as active modeling for three primary purposes: external anchoring, information foraging, and cognitive offloading. Finally we discuss the implications of our approach for design, evaluation and theory development.


Assuntos
Gráficos por Computador , Modelos Psicológicos , Percepção Visual , Cognição , Humanos
10.
IEEE Trans Vis Comput Graph ; 26(6): 2168-2179, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32012017

RESUMO

Interaction plays a vital role during visual network exploration as users need to engage with both elements in the view (e.g., nodes, links) and interface controls (e.g., sliders, dropdown menus). Particularly as the size and complexity of a network grow, interactive displays supporting multimodal input (e.g., touch, speech, pen, gaze) exhibit the potential to facilitate fluid interaction during visual network exploration and analysis. While multimodal interaction with network visualization seems like a promising idea, many open questions remain. For instance, do users actually prefer multimodal input over unimodal input, and if so, why? Does it enable them to interact more naturally, or does having multiple modes of input confuse users? To answer such questions, we conducted a qualitative user study in the context of a network visualization tool, comparing speech- and touch-based unimodal interfaces to a multimodal interface combining the two. Our results confirm that participants strongly prefer multimodal input over unimodal input attributing their preference to: 1) the freedom of expression, 2) the complementary nature of speech and touch, and 3) integrated interactions afforded by the combination of the two modalities. We also describe the interaction patterns participants employed to perform common network visualization operations and highlight themes for future multimodal network visualization systems to consider.


Assuntos
Gráficos por Computador , Visualização de Dados , Interface Usuário-Computador , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fala/fisiologia , Tato/fisiologia , Adulto Jovem
11.
IEEE Comput Graph Appl ; 40(4): 96-103, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32544054

RESUMO

In this article, we discuss challenges and strategies for evaluating natural language interfaces (NLIs) for data visualization. Through an examination of prior studies and reflecting on own experiences in evaluating visualization NLIs, we highlight benefits and considerations of three task framing strategies: Jeopardy-style facts, open-ended tasks, and target replication tasks. We hope the discussions in this article can guide future researchers working on visualization NLIs and help them avoid common challenges and pitfalls when evaluating these systems. Finally, to motivate future research, we highlight topics that call for further investigation including development of new evaluation metrics, and considering the type of natural language input (spoken versus typed), among others.

12.
IEEE Comput Graph Appl ; 40(2): 82-90, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149613

RESUMO

The visualization research community can and should reach broader audiences beyond data-savvy groups of people, because these audiences could also greatly benefit from visual access to data. In this article, we discuss four research topics-personal data visualization, data visualization on mobile devices, inclusive data visualization, and multimodal interaction for data visualization-that, individually and collaboratively, would help us reach broader audiences with data visualization, making data more accessible.

13.
IEEE Trans Vis Comput Graph ; 26(1): 461-471, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31442976

RESUMO

An emerging generation of visualization authoring systems support expressive information visualization without textual programming. As they vary in their visualization models, system architectures, and user interfaces, it is challenging to directly compare these systems using traditional evaluative methods. Recognizing the value of contextualizing our decisions in the broader design space, we present critical reflections on three systems we developed -Lyra, Data Illustrator, and Charticulator. This paper surfaces knowledge that would have been daunting within the constituent papers of these three systems. We compare and contrast their (previously unmentioned) limitations and trade-offs between expressivity and learnability. We also reflect on common assumptions that we made during the development of our systems, thereby informing future research directions in visualization authoring systems.

14.
IEEE Trans Vis Comput Graph ; 15(6): 1025-32, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19834168

RESUMO

We present a case study of our experience designing SellTrend, a visualization system for analyzing airline travel purchase requests. The relevant transaction data can be characterized as multi-variate temporal and categorical event sequences, and the chief problem addressed is how to help company analysts identify complex combinations of transaction attributes that contribute to failed purchase requests. SellTrend combines a diverse set of techniques ranging from time series visualization to faceted browsing and historical trend analysis in order to help analysts make sense of the data. We believe that the combination of views and interaction capabilities in SellTrend provides an innovative approach to this problem and to other similar types of multivariate, temporally driven transaction data analysis. Initial feedback from company analysts confirms the utility and benefits of the system.

15.
IEEE Trans Vis Comput Graph ; 14(6): 1173-80, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18988961

RESUMO

Even though information visualization (InfoVis) research has matured in recent years, it is generally acknowledged that the field still lacks supporting, encompassing theories. In this paper, we argue that the distributed cognition framework can be used to substantiate the theoretical foundation of InfoVis. We highlight fundamental assumptions and theoretical constructs of the distributed cognition approach, based on the cognitive science literature and a real life scenario. We then discuss how the distributed cognition framework can have an impact on the research directions and methodologies we take as InfoVis researchers. Our contributions are as follows. First, we highlight the view that cognition is more an emergent property of interaction than a property of the human mind. Second, we argue that a reductionist approach to study the abstract properties of isolated human minds may not be useful in informing InfoVis design. Finally we propose to make cognition an explicit research agenda, and discuss the implications on how we perform evaluation and theory building.


Assuntos
Biomimética/métodos , Cognição , Gráficos por Computador , Informática/métodos , Armazenamento e Recuperação da Informação/métodos , Interface Usuário-Computador
16.
IEEE Trans Vis Comput Graph ; 14(6): 1261-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18988972

RESUMO

In the established procedural model of information visualization, the first operation is to transform raw data into data tables [1]. The transforms typically include abstractions that aggregate and segment relevant data and are usually defined by a human, user or programmer. The theme of this paper is that for video, data transforms should be supported by low level computer vision. High level reasoning still resides in the human analyst, while part of the low level perception is handled by the computer. To illustrate this approach, we present Viz-A-Vis, an overhead video capture and access system for activity analysis in natural settings over variable periods of time. Overhead video provides rich opportunities for long-term behavioral and occupancy analysis, but it poses considerable challenges. We present initial steps addressing two challenges. First, overhead video generates overwhelmingly large volumes of video impractical to analyze manually. Second, automatic video analysis remains an open problem for computer vision.


Assuntos
Algoritmos , Inteligência Artificial , Gráficos por Computador , Interpretação de Imagem Assistida por Computador/métodos , Software , Interface Usuário-Computador , Gravação em Vídeo/métodos , Aumento da Imagem/métodos
17.
IEEE Trans Vis Comput Graph ; 14(6): 1325-32, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18988980

RESUMO

Animation has been used to show trends in multi-dimensional data. This technique has recently gained new prominence for presentations, most notably with Gapminder Trendalyzer. In Trendalyzer, animation together with interesting data and an engaging presenter helps the audience understand the results of an analysis of the data. It is less clear whether trend animation is effective for analysis. This paper proposes two alternative trend visualizations that use static depictions of trends: one which shows traces of all trends overlaid simultaneously in one display and a second that uses a small multiples display to show the trend traces side-by-side. The paper evaluates the three visualizations for both analysis and presentation. Results indicate that trend animation can be challenging to use even for presentations; while it is the fastest technique for presentation and participants find it enjoyable and exciting, it does lead to many participant errors. Animation is the least effective form for analysis; both static depictions of trends are significantly faster than animation, and the small multiples display is more accurate.

18.
IEEE Trans Vis Comput Graph ; 24(1): 511-521, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28866579

RESUMO

Data visualization systems have predominantly been developed for WIMP-based direct manipulation interfaces. Only recently have other forms of interaction begun to appear, such as natural language or touch-based interaction, though usually operating only independently. Prior evaluations of natural language interfaces for visualization have indicated potential value in combining direct manipulation and natural language as complementary interaction techniques. We hypothesize that truly multimodal interfaces for visualization, those providing users with freedom of expression via both natural language and touch-based direct manipulation input, may provide an effective and engaging user experience. Unfortunately, however, little work has been done in exploring such multimodal visualization interfaces. To address this gap, we have created an architecture and a prototype visualization system called Orko that facilitates both natural language and direct manipulation input. Specifically, Orko focuses on the domain of network visualization, one that has largely relied on WIMP-based interfaces and direct manipulation interaction, and has little or no prior research exploring natural language interaction. We report results from an initial evaluation study of Orko, and use our observations to discuss opportunities and challenges for future work in multimodal network visualization interfaces.

19.
Artigo em Inglês | MEDLINE | ID: mdl-30136989

RESUMO

Recently, an increasing number of visualization systems have begun to incorporate natural language generation (NLG) capabilities into their interfaces. NLG-based visualization systems typically leverage a suite of statistical functions to automatically extract key facts about the underlying data and surface them as natural language sentences alongside visualizations. With current systems, users are typically required to read the system-generated sentences and mentally map them back to the accompanying visualization. However, depending on the features of the visualization (e.g., visualization type, data density) and the complexity of the data fact, mentally mapping facts to visualizations can be a challenging task. Furthermore, more than one visualization could be used to illustrate a single data fact. Unfortunately, current tools provide little or no support for users to explore such alternatives. In this paper, we explore how system-generated data facts can be treated as interactive widgets to help users interpret visualizations and communicate their findings. We present Voder, a system that lets users interact with automatically-generated data facts to explore both alternative visualizations to convey a data fact as well as a set of embellishments to highlight a fact within a visualization. Leveraging data facts as interactive widgets, Voder also facilitates data fact-based visualization search. To assess Voder's design and features, we conducted a preliminary user study with 12 participants having varying levels of experience with visualization tools. Participant feedback suggested that interactive data facts aided them in interpreting visualizations. Participants also stated that the suggestions surfaced through the facts helped them explore alternative visualizations and embellishments to communicate individual data facts.

20.
Artigo em Inglês | MEDLINE | ID: mdl-30188826

RESUMO

To interpret data visualizations, people must determine how visual features map onto concepts. For example, to interpret colormaps, people must determine how dimensions of color (e.g., lightness, hue) map onto quantities of a given measure (e.g., brain activity, correlation magnitude). This process is easier when the encoded mappings in the visualization match people's predictions of how visual features will map onto concepts, their inferred mappings. To harness this principle in visualization design, it is necessary to understand what factors determine people's inferred mappings. In this study, we investigated how inferred color-quantity mappings for colormap data visualizations were influenced by the background color. Prior literature presents seemingly conflicting accounts of how the background color affects inferred color-quantity mappings. The present results help resolve those conflicts, demonstrating that sometimes the background has an effect and sometimes it does not, depending on whether the colormap appears to vary in opacity. When there is no apparent variation in opacity, participants infer that darker colors map to larger quantities (dark-is-more bias). As apparent variation in opacity increases, participants become biased toward inferring that more opaque colors map to larger quantities (opaque-is-more bias). These biases work together on light backgrounds and conflict on dark backgrounds. Under such conflicts, the opaque-is-more bias can negate, or even supersede the dark-is-more bias. The results suggest that if a design goal is to produce colormaps that match people's inferred mappings and are robust to changes in background color, it is beneficial to use colormaps that will not appear to vary in opacity on any background color, and to encode larger quantities in darker colors.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa