Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nature ; 579(7800): 609-614, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32040955

RESUMO

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions through the actions of two G-protein-coupled receptors: MT1 and MT2. Circadian release of melatonin at night from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing the physiology and behaviour of animals to the light-dark cycle1-4. The two receptors are established drug targets for aligning circadian phase to this cycle in disorders of sleep5,6 and depression1-4,7-9. Despite their importance, few in vivo active MT1-selective ligands have been reported2,8,10-12, hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked more than 150 million virtual molecules to an MT1 crystal structure, prioritizing structural fit and chemical novelty. Of these compounds, 38 high-ranking molecules were synthesized and tested, revealing ligands with potencies ranging from 470 picomolar to 6 micromolar. Structure-based optimization led to two selective MT1 inverse agonists-which were topologically unrelated to previously explored chemotypes-that acted as inverse agonists in a mouse model of circadian re-entrainment. Notably, we found that these MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 h when given at subjective dusk, an agonist-like effect that was eliminated in MT1- but not in MT2-knockout mice. This study illustrates the opportunities for modulating melatonin receptor biology through MT1-selective ligands and for the discovery of previously undescribed, in vivo active chemotypes from structure-based screens of diverse, ultralarge libraries.


Assuntos
Ritmo Circadiano/fisiologia , Ligantes , Receptores de Melatonina/agonistas , Receptores de Melatonina/metabolismo , Animais , Ritmo Circadiano/efeitos dos fármacos , Escuridão , Avaliação Pré-Clínica de Medicamentos , Agonismo Inverso de Drogas , Feminino , Humanos , Luz , Masculino , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/deficiência , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/agonistas , Receptor MT2 de Melatonina/deficiência , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo , Receptores de Melatonina/deficiência , Receptores de Melatonina/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Especificidade por Substrato/genética
3.
Nature ; 569(7755): 289-292, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019305

RESUMO

The human MT1 and MT2 melatonin receptors1,2 are G-protein-coupled receptors (GPCRs) that help to regulate circadian rhythm and sleep patterns3. Drug development efforts have targeted both receptors for the treatment of insomnia, circadian rhythm and mood disorders, and cancer3, and MT2 has also been implicated in type 2 diabetes4,5. Here we report X-ray free electron laser (XFEL) structures of the human MT2 receptor in complex with the agonists 2-phenylmelatonin (2-PMT) and ramelteon6 at resolutions of 2.8 Å and 3.3 Å, respectively, along with two structures of function-related mutants: H2085.46A (superscripts represent the Ballesteros-Weinstein residue numbering nomenclature7) and N862.50D, obtained in complex with 2-PMT. Comparison of the structures of MT2 with a published structure8 of MT1 reveals that, despite conservation of the orthosteric ligand-binding site residues, there are notable conformational variations as well as differences in [3H]melatonin dissociation kinetics that provide insights into the selectivity between melatonin receptor subtypes. A membrane-buried lateral ligand entry channel is observed in both MT1 and MT2, but in addition the MT2 structures reveal a narrow opening towards the solvent in the extracellular part of the receptor. We provide functional and kinetic data that support a prominent role for intramembrane ligand entry in both receptors, and suggest that there might also be an extracellular entry path in MT2. Our findings contribute to a molecular understanding of melatonin receptor subtype selectivity and ligand access modes, which are essential for the design of highly selective melatonin tool compounds and therapeutic agents.


Assuntos
Elétrons , Lasers , Modelos Moleculares , Receptor MT2 de Melatonina/química , Receptor MT2 de Melatonina/metabolismo , Cristalização , Diabetes Mellitus Tipo 2/genética , Humanos , Indenos/química , Indenos/metabolismo , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Melatonina/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Relação Estrutura-Atividade , Especificidade por Substrato
4.
Nature ; 569(7755): 284-288, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019306

RESUMO

Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that maintains circadian rhythms1 by synchronization to environmental cues and is involved in diverse physiological processes2 such as the regulation of blood pressure and core body temperature, oncogenesis, and immune function3. Melatonin is formed in the pineal gland in a light-regulated manner4 by enzymatic conversion from 5-hydroxytryptamine (5-HT or serotonin), and modulates sleep and wakefulness5 by activating two high-affinity G-protein-coupled receptors, type 1A (MT1) and type 1B (MT2)3,6. Shift work, travel, and ubiquitous artificial lighting can disrupt natural circadian rhythms; as a result, sleep disorders affect a substantial population in modern society and pose a considerable economic burden7. Over-the-counter melatonin is widely used to alleviate jet lag and as a safer alternative to benzodiazepines and other sleeping aids8,9, and is one of the most popular supplements in the United States10. Here, we present high-resolution room-temperature X-ray free electron laser (XFEL) structures of MT1 in complex with four agonists: the insomnia drug ramelteon11, two melatonin analogues, and the mixed melatonin-serotonin antidepressant agomelatine12,13. The structure of MT2 is described in an accompanying paper14. Although the MT1 and 5-HT receptors have similar endogenous ligands, and agomelatine acts on both receptors, the receptors differ markedly in the structure and composition of their ligand pockets; in MT1, access to the ligand pocket is tightly sealed from solvent by extracellular loop 2, leaving only a narrow channel between transmembrane helices IV and V that connects it to the lipid bilayer. The binding site is extremely compact, and ligands interact with MT1 mainly by strong aromatic stacking with Phe179 and auxiliary hydrogen bonds with Asn162 and Gln181. Our structures provide an unexpected example of atypical ligand entry for a non-lipid receptor, lay the molecular foundation of ligand recognition by melatonin receptors, and will facilitate the design of future tool compounds and therapeutic agents, while their comparison to 5-HT receptors yields insights into the evolution and polypharmacology of G-protein-coupled receptors.


Assuntos
Elétrons , Lasers , Modelos Moleculares , Receptor MT1 de Melatonina/química , Receptor MT1 de Melatonina/metabolismo , Acetamidas/química , Acetamidas/metabolismo , Sequência de Aminoácidos , Antidepressivos/química , Antidepressivos/metabolismo , Cristalização , Humanos , Indenos/química , Indenos/metabolismo , Ligantes , Melatonina/análogos & derivados , Melatonina/química , Simulação de Acoplamento Molecular , Mutação , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/genética , Receptor 5-HT2C de Serotonina/química , Relação Estrutura-Atividade , Especificidade por Substrato
5.
PLoS Biol ; 19(11): e3001451, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34731174

RESUMO

[This corrects the article DOI: 10.1371/journal.pbio.3001363.].

6.
PLoS Biol ; 19(9): e3001363, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34582432

RESUMO

Encoding of episodic memories relies on stimulus-specific information processing and involves the left prefrontal cortex. We here present an incidental finding from a simultaneous EEG-TMS experiment as well as a replication of this unexpected effect. Our results reveal that stimulating the left dorsolateral prefrontal cortex (DLPFC) with slow repetitive transcranial magnetic stimulation (rTMS) leads to enhanced word memory performance. A total of 40 healthy human participants engaged in a list learning paradigm. Half of the participants (N = 20) received 1 Hz rTMS to the left DLPFC, while the other half (N = 20) received 1 Hz rTMS to the vertex and served as a control group. Participants receiving left DLPFC stimulation demonstrated enhanced memory performance compared to the control group. This effect was replicated in a within-subjects experiment where 24 participants received 1 Hz rTMS to the left DLPFC and vertex. In this second experiment, DLPFC stimulation also induced better memory performance compared to vertex stimulation. In addition to these behavioural effects, we found that 1 Hz rTMS to DLPFC induced stronger beta power modulation in posterior areas, a state that is known to be beneficial for memory encoding. Further analysis indicated that beta modulations did not have an oscillatory origin. Instead, the observed beta modulations were a result of a spectral tilt, suggesting inhibition of these parietal regions. These results show that applying 1 Hz rTMS to DLPFC, an area involved in episodic memory formation, improves memory performance via modulating neural activity in parietal regions.


Assuntos
Memória de Curto Prazo , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino
7.
Trends Biochem Sci ; 42(9): 749-762, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28733116

RESUMO

X-ray free electron lasers (XFELs) have the potential to revolutionize macromolecular structural biology due to the unique combination of spatial coherence, extreme peak brilliance, and short duration of X-ray pulses. A recently emerged serial femtosecond (fs) crystallography (SFX) approach using XFEL radiation overcomes some of the biggest hurdles of traditional crystallography related to radiation damage through the diffraction-before-destruction principle. Intense fs XFEL pulses enable high-resolution room-temperature structure determination of difficult-to-crystallize biological macromolecules, while simultaneously opening a new era of time-resolved structural studies. Here, we review the latest developments in instrumentation, sample delivery, data analysis, crystallization methods, and applications of SFX to important biological questions, and conclude with brief insights into the bright future of structural biology using XFELs.


Assuntos
Cristalografia/métodos , Elétrons , Lasers , Substâncias Macromoleculares/química , Fatores de Tempo , Raios X
8.
J Lipid Res ; 56(12): 2348-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26447231

RESUMO

Lipases (EC 3.1.1.3) are ubiquitous hydrolases for the carboxyl ester bond of water-insoluble substrates, such as triacylglycerols, phospholipids, and other insoluble substrates, acting in aqueous as well as in low-water media, thus being of considerable physiological significance with high interest also for their industrial applications. The hydrolysis reaction follows a two-step mechanism, or "interfacial activation," with adsorption of the enzyme to a heterogeneous interface and subsequent enhancement of the lipolytic activity. Among lipases, Candida antarctica lipase B (CALB) has never shown any significant interfacial activation, and a closed conformation of CALB has never been reported, leading to the conclusion that its behavior was due to the absence of a lid regulating the access to the active site. The lid open and closed conformations and their protonation states are observed in the crystal structure of CALB at 0.91 Å resolution. Having the open and closed states at atomic resolution allows relating protonation to the conformation, indicating the role of Asp145 and Lys290 in the conformation alteration. The findings explain the lack of interfacial activation of CALB and offer new elements to elucidate this mechanism, with the consequent implications for the catalytic properties and classification of lipases.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Lipase/química , Lipase/metabolismo , Cristalografia por Raios X , Conformação Proteica
9.
J Biomol NMR ; 54(3): 245-56, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23001323

RESUMO

Protein internal motions influence observables of NMR experiments. The effect of internal motions occurring at the sub-nanosecond timescale can be described by NMR order parameters. Here, we report that the use of order parameters derived from Molecular Dynamics (MD) simulations of two holo-structures of Protein Kinase A increase the discrimination power of INPHARMA, an NMR based methodology that selects docked ligand orientations by maximizing the correlation of back-calculated to experimental data. By including internal motion in the back-calculation of the INPHARMA transfer, we obtain a more realistic description of the system, which better represents the experimental data. Furthermore, we propose a set of generic order parameters, derived from MD simulations of globular proteins, which can be used in the back-calculation of INPHARMA NOEs for any protein-ligand complex, thus by-passing the need of obtaining system-specific order parameters for new protein-ligand complexes.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Proteínas Quinases Dependentes de AMP Cíclico , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , Proteínas/metabolismo , Reprodutibilidade dos Testes
10.
Proc Natl Acad Sci U S A ; 106(29): 12079-84, 2009 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-19581596

RESUMO

Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.


Assuntos
Capsídeo/metabolismo , Citosina Desaminase/química , Citosina Desaminase/metabolismo , Modelos Moleculares , RNA/metabolismo , Desaminases APOBEC , Sítios de Ligação , Linhagem Celular , Citidina Desaminase , Humanos , Immunoblotting , Proteínas Mutantes/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estrutura Secundária de Proteína , Produtos do Gene vif do Vírus da Imunodeficiência Humana/metabolismo
11.
Elife ; 112022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35532123

RESUMO

Strong gamma-band oscillations in primate early visual cortex can be induced by homogeneous color surfaces (Peter et al., 2019; Shirhatti and Ray, 2018). Compared to other hues, particularly strong gamma oscillations have been reported for red stimuli. However, precortical color processing and the resultant strength of input to V1 have often not been fully controlled for. Therefore, stronger responses to red might be due to differences in V1 input strength. We presented stimuli that had equal luminance and cone contrast levels in a color coordinate system based on responses of the lateral geniculate nucleus, the main input source for area V1. With these stimuli, we recorded magnetoencephalography in 30 human participants. We found gamma oscillations in early visual cortex which, contrary to previous reports, did not differ between red and green stimuli of equal L-M cone contrast. Notably, blue stimuli with contrast exclusively on the S-cone axis induced very weak gamma responses, as well as smaller event-related fields and poorer change-detection performance. The strength of human color gamma responses for stimuli on the L-M axis could be well explained by L-M cone contrast and did not show a clear red bias when L-M cone contrast was properly equalized.


Assuntos
Córtex Visual , Animais , Cor , Corpos Geniculados/fisiologia , Humanos , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/fisiologia , Visão Ocular , Córtex Visual/fisiologia , Vias Visuais/fisiologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-36643971

RESUMO

With the advent of X-ray Free Electron Lasers (XFELs), new, high-throughput serial crystallography techniques for macromolecular structure determination have emerged. Serial femtosecond crystallography (SFX) and related methods provide possibilities beyond canonical, single-crystal rotation crystallography by mitigating radiation damage and allowing time-resolved studies with unprecedented temporal resolution. This primer aims to assist structural biology groups with little or no experience in serial crystallography planning and carrying out a successful SFX experiment. It discusses the background of serial crystallography and its possibilities. Microcrystal growth and characterization methods are discussed, alongside techniques for sample delivery and data processing. Moreover, it gives practical tips for preparing an experiment, what to consider and do during a beamtime and how to conduct the final data analysis. Finally, the Primer looks at various applications of SFX, including structure determination of membrane proteins, investigation of radiation damage-prone systems and time-resolved studies.

13.
Eur J Med Chem ; 241: 114620, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-35933788

RESUMO

The past fifty years have been marked by the surge of neurodegenerative diseases. Unfortunately, current treatments are only symptomatic. Hence, the search for new and innovative therapeutic targets for curative treatments becomes a major challenge. Among these targets, the adenosine A2A receptor (A2AAR) has been the subject of much research in recent years. In this paper, we report the design, synthesis and pharmacological analysis of quinazoline derivatives as A2AAR antagonists with high ligand efficiency. This class of molecules has been discovered by a virtual screening and bears no structural semblance with reference antagonist ZM-241385. More precisely, we identified a series of 2-aminoquinazoline as promising A2AAR antagonists. Among them, one compound showed a high affinity towards A2AAR (21a, Ki = 20 nM). We crystallized this ligand in complex with A2AAR, confirming one of our predicted docking poses and opening up possibilities for further optimization to derive selective ligands for specific adenosine receptor subtypes.


Assuntos
Antagonistas do Receptor A2 de Adenosina , Antagonistas de Receptores Purinérgicos P1 , Antagonistas do Receptor A2 de Adenosina/química , Antagonistas do Receptor A2 de Adenosina/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Antagonistas de Receptores Purinérgicos P1/farmacologia , Quinazolinas/farmacologia , Receptor A2A de Adenosina/química , Relação Estrutura-Atividade
14.
Biochem Soc Trans ; 39(5): 1365-70, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21936816

RESUMO

The challenge of translating the huge amount of genomic and biochemical data into new drugs is a costly and challenging task. Historically, there has been comparatively little focus on linking the biochemical and chemical worlds. To address this need, we have developed ChEMBL, an online resource of small-molecule SAR (structure-activity relationship) data, which can be used to support chemical biology, lead discovery and target selection in drug discovery. The database contains the abstracted structures, properties and biological activities for over 700000 distinct compounds and in excess of more than 3 million bioactivity records abstracted from over 40000 publications. Additional public domain resources can be readily integrated into the same data model (e.g. PubChem BioAssay data). The compounds in ChEMBL are largely extracted from the primary medicinal chemistry literature, and are therefore usually 'drug-like' or 'lead-like' small molecules with full experimental context. The data cover a significant fraction of the discovery of modern drugs, and are useful in a wide range of drug design and discovery tasks. In addition to the compound data, ChEMBL also contains information for over 8000 protein, cell line and whole-organism 'targets', with over 4000 of those being proteins linked to their underlying genes. The database is searchable both chemically, using an interactive compound sketch tool, protein sequences, family hierarchies, SMILES strings, compound research codes and key words, and biologically, using a variety of gene identifiers, protein sequence similarity and protein families. The information retrieved can then be readily filtered and downloaded into various formats. ChEMBL can be accessed online at https://www.ebi.ac.uk/chembldb.


Assuntos
Mineração de Dados , Bases de Dados Factuais , Descoberta de Drogas , Animais , Biologia Computacional/métodos , Genômica , Humanos , Armazenamento e Recuperação da Informação , Estrutura Molecular , Preparações Farmacêuticas/química , Preparações Farmacêuticas/metabolismo , Proteínas/química , Relação Estrutura-Atividade
15.
Sci Adv ; 7(22)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34049877

RESUMO

Metabotropic γ-aminobutyric acid G protein-coupled receptors (GABAB) represent one of the two main types of inhibitory neurotransmitter receptors in the brain. These receptors act both pre- and postsynaptically by modulating the transmission of neuronal signals and are involved in a range of neurological diseases, from alcohol addiction to epilepsy. A series of recent cryo-EM studies revealed critical details of the activation mechanism of GABAB Structures are now available for the receptor bound to ligands with different modes of action, including antagonists, agonists, and positive allosteric modulators, and captured in different conformational states from the inactive apo to the fully active state bound to a G protein. These discoveries provide comprehensive insights into the activation of the GABAB receptor, which not only broaden our understanding of its structure, pharmacology, and physiological effects but also will ultimately facilitate the discovery of new therapeutic drugs and neuromodulators.


Assuntos
Encéfalo , Receptores de GABA-B , Encéfalo/metabolismo , Ligantes , Receptores de GABA-B/química , Receptores de GABA-B/metabolismo , Ácido gama-Aminobutírico/metabolismo
16.
Elife ; 102021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34473058

RESUMO

Under natural conditions, the visual system often sees a given input repeatedly. This provides an opportunity to optimize processing of the repeated stimuli. Stimulus repetition has been shown to strongly modulate neuronal-gamma band synchronization, yet crucial questions remained open. Here we used magnetoencephalography in 30 human subjects and find that gamma decreases across ≈10 repetitions and then increases across further repetitions, revealing plastic changes of the activated neuronal circuits. Crucially, increases induced by one stimulus did not affect responses to other stimuli, demonstrating stimulus specificity. Changes partially persisted when the inducing stimulus was repeated after 25 minutes of intervening stimuli. They were strongest in early visual cortex and increased interareal feedforward influences. Our results suggest that early visual cortex gamma synchronization enables adaptive neuronal processing of recurring stimuli. These and previously reported changes might be due to an interaction of oscillatory dynamics with established synaptic plasticity mechanisms.


Assuntos
Adaptação Fisiológica/fisiologia , Ondas Encefálicas/fisiologia , Magnetoencefalografia/métodos , Córtex Visual/fisiologia , Potenciais de Ação/fisiologia , Adulto , Humanos , Modelos Lineares , Masculino , Plasticidade Neuronal , Estimulação Luminosa , Adulto Jovem
17.
Cell Rep ; 37(10): 110086, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879273

RESUMO

When a visual stimulus is repeated, average neuronal responses typically decrease, yet they might maintain or even increase their impact through increased synchronization. Previous work has found that many repetitions of a grating lead to increasing gamma-band synchronization. Here, we show in awake macaque area V1 that both repetition-related reductions in firing rate and increases in gamma are specific to the repeated stimulus. These effects show some persistence on the timescale of minutes. Gamma increases are specific to the presented stimulus location. Further, repetition effects on gamma and on firing rates generalize to images of natural objects. These findings support the notion that gamma-band synchronization subserves the adaptive processing of repeated stimulus encounters.


Assuntos
Sincronização Cortical , Potenciais Evocados Visuais , Plasticidade Neuronal , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adaptação Fisiológica , Animais , Macaca mulatta , Masculino , Estimulação Luminosa , Fatores de Tempo
18.
PLoS One ; 15(8): e0236287, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32785218

RESUMO

The forgetting of previously remembered information has, for a long time, been explained by purely passive processes. This viewpoint has been challenged by the finding that humans show worse memory for specific items that they have been instructed to forget. The dorsolateral prefrontal cortex has, through imaging, lesion and brain stimulation studies, been implied in controlling such active forgetting processes. In this study, we attempted to solidify evidence for such a causal role of the dlPFC in directed forgetting by replicating an existing rTMS study (Hanslmayr S, 2012) in a preregistered within-participant design. We stimulated participants at the dlPFC (BA9) or vertex using 45s of 1Hz rTMS after instructions to forget previously remembered words in a list-method directed forgetting paradigm and tested for effects on the amount of forgotten information. Contrary to the study we were attempting to replicate, no significant increase in forgetting under dlPFC stimulation was found in our participants. However, when combining our results with the study we were attempting to replicate, dlPFC stimulation led to significantly increased directed forgetting in both studies combined. We further explored if the rTMS parameters used here and in earlier work (Hanslmayr S, 2012) influenced inhibitory processing at their time of delivery or in a more persistent manner. Unaltered incongruency and negative priming effects in a Stroop task conducted directly after stimulation suggests that our rTMS stimulation did not continue to influence inhibitory processing after the time of stimulation. As the combined evidence for increased directed forgetting due to rTMS dlPFC stimulation is still quite weak, additional replications are necessary to show that directed forgetting is indeed causally driven by an active prefrontal process.


Assuntos
Transtornos da Memória/fisiopatologia , Rememoração Mental/fisiologia , Córtex Pré-Frontal/fisiologia , Estimulação Magnética Transcraniana , Adolescente , Adulto , Eletroencefalografia , Feminino , Humanos , Masculino , Transtornos da Memória/diagnóstico , Teste de Stroop , Adulto Jovem
19.
FEBS J ; 287(8): 1496-1510, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31693784

RESUMO

The long-anticipated high-resolution structures of the human melatonin G protein-coupled receptors MT1 and MT2 , involved in establishing and maintaining circadian rhythm, were obtained in complex with two melatonin analogs and two approved anti-insomnia and antidepression drugs using X-ray free-electron laser serial femtosecond crystallography. The structures shed light on the overall conformation and unusual structural features of melatonin receptors, as well as their ligand binding sites and the melatonergic pharmacophore, thereby providing insights into receptor subtype selectivity. The structures revealed an occluded orthosteric ligand binding site with a membrane-buried channel for ligand entry in both receptors, and an additional putative ligand entry path in MT2 from the extracellular side. This unexpected ligand entry mode contributes to facilitating the high specificity with which melatonin receptors bind their cognate ligand and exclude structurally similar molecules such as serotonin, the biosynthetic precursor of melatonin. Finally, the MT2 structure allowed accurate mapping of type 2 diabetes-related single-nucleotide polymorphisms, where a clustering of residues in helices I and II on the protein-membrane interface was observed which could potentially influence receptor oligomerization. The role of receptor oligomerization is further discussed in light of the differential interaction of MT1 and MT2 with GPR50, a regulatory melatonin coreceptor. The melatonin receptor structures will facilitate design of selective tool compounds to further dissect the specific physiological function of each receptor subtype as well as provide a structural basis for next-generation sleeping aids and other drugs targeting these receptors with higher specificity and fewer side effects.


Assuntos
Receptores de Melatonina/química , Receptores de Melatonina/metabolismo , Animais , Desenho de Fármacos , Humanos , Conformação Proteica , Medicamentos Indutores do Sono
20.
Elife ; 92020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32118583

RESUMO

Melatonin receptors MT1 and MT2 are involved in synchronizing circadian rhythms and are important targets for treating sleep and mood disorders, type-2 diabetes and cancer. Here, we performed large scale structure-based virtual screening for new ligand chemotypes using recently solved high-resolution 3D crystal structures of agonist-bound MT receptors. Experimental testing of 62 screening candidates yielded the discovery of 10 new agonist chemotypes with sub-micromolar potency at MT receptors, with compound 21 reaching EC50 of 0.36 nM. Six of these molecules displayed selectivity for MT2 over MT1. Moreover, two most potent agonists, including 21 and a close derivative of melatonin, 28, had dramatically reduced arrestin recruitment at MT2, while compound 37 was devoid of Gi signaling at MT1, implying biased signaling. This study validates the suitability of the agonist-bound orthosteric pocket in the MT receptor structures for the structure-based discovery of selective agonists.


Assuntos
Descoberta de Drogas/métodos , Receptores de Melatonina/agonistas , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Receptor MT1 de Melatonina/agonistas , Receptor MT2 de Melatonina/agonistas , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa