Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 203(17): e0019921, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34124942

RESUMO

Two-component signaling systems (TCSs) are comprised of a sensory histidine kinase and a response regulator protein. In response to environmental changes, sensor kinases directly phosphorylate their cognate response regulator to affect gene expression. Bacteria typically express multiple TCSs that are insulated from one another and regulate distinct physiological processes. There are examples of cross-regulation between TCSs, but this phenomenon remains relatively unexplored. We have identified regulatory links between the ChvG-ChvI (ChvGI) and NtrY-NtrX (NtrYX) TCSs, which control important and often overlapping processes in alphaproteobacteria, including maintenance of the cell envelope. Deletion of chvG and chvI in Caulobacter crescentus limited growth in defined medium, and a selection for genetic suppressors of this growth phenotype uncovered interactions among chvGI, ntrYX, and ntrZ, which encodes a previously uncharacterized periplasmic protein. Significant overlap in the experimentally defined ChvI and NtrX transcriptional regulons provided support for the observed genetic connections between ntrYX and chvGI. Moreover, we present evidence that the growth defect of strains lacking chvGI is influenced by the phosphorylation state of NtrX and, to some extent, by levels of the TonB-dependent receptor ChvT. Measurements of NtrX phosphorylation in vivo indicated that NtrZ is an upstream regulator of NtrY and that NtrY primarily functions as an NtrX phosphatase. We propose a model in which NtrZ functions in the periplasm to inhibit NtrY phosphatase activity; regulation of phosphorylated NtrX levels by NtrZ and NtrY provides a mechanism to modulate and balance expression of the NtrX and ChvI regulons under different growth conditions. IMPORTANCE TCSs enable bacteria to regulate gene expression in response to physiochemical changes in their environment. The ChvGI and NtrYX TCSs regulate diverse pathways associated with pathogenesis, growth, and cell envelope function in many alphaproteobacteria. We used Caulobacter crescentus as a model to investigate regulatory connections between ChvGI and NtrYX. Our work defined the ChvI transcriptional regulon in C. crescentus and revealed a genetic interaction between ChvGI and NtrYX, whereby modulation of NtrYX signaling affects the survival of cells lacking ChvGI. In addition, we identified NtrZ as a periplasmic inhibitor of NtrY phosphatase activity in vivo. Our work establishes C. crescentus as an excellent model to investigate multilevel regulatory connections between ChvGI and NtrYX in alphaproteobacteria.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/crescimento & desenvolvimento , Caulobacter crescentus/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Fosforilação , Regulon , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 114(31): E6306-E6313, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724722

RESUMO

AAA+ proteases and remodeling machines couple hydrolysis of ATP to mechanical unfolding and translocation of proteins following recognition of sequence tags called degrons. Here, we use single-molecule optical trapping to determine the mechanochemistry of two AAA+ proteases, Escherichia coli ClpXP and ClpAP, as they unfold and translocate substrates containing multiple copies of the titinI27 domain during degradation initiated from the N terminus. Previous studies characterized degradation of related substrates with C-terminal degrons. We find that ClpXP and ClpAP unfold the wild-type titinI27 domain and a destabilized variant far more rapidly when pulling from the N terminus, whereas translocation speed is reduced only modestly in the N-to-C direction. These measurements establish the role of directionality in mechanical protein degradation, show that degron placement can change whether unfolding or translocation is rate limiting, and establish that one or a few power strokes are sufficient to unfold some protein domains.

3.
J Bacteriol ; 200(19)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012732

RESUMO

GsrN is a conserved small RNA that is under transcriptional control of the general stress sigma factor, σT, and that functions as a posttranscriptional regulator of Caulobacter crescentus survival under multiple stress conditions. We have defined features of GsrN structure that determine survival under hyperosmotic stress, and we have applied transcriptomic and proteomic methods to identify regulatory targets of GsrN under hyperosmotic conditions. The 5' end of GsrN, which includes a conserved cytosine-rich stem-loop structure, is necessary for cell survival after osmotic upshock. GsrN both activates and represses gene expression in this stress condition. Expression of an uncharacterized open reading frame predicted to encode a glycine zipper protein, osrP, is strongly activated by GsrN. Our data support a model in which GsrN physically interacts with osrP mRNA through its 5' C-rich stem-loop to enhance OsrP protein expression. We conclude that sigT, gsrN, and osrP form a coherent feedforward loop in which σT activates gsrN and osrP transcription during stress and GsrN activates OsrP protein expression at the posttranscriptional level. This study delineates transcriptional and posttranscriptional layers of Caulobacter gene expression control during hyperosmotic stress, uncovers a new regulatory target of GsrN, and defines a coherent feedforward motif in the Caulobacter general stress response (GSR) regulatory network.IMPORTANCE Bacteria inhabit diverse niches and must adapt their physiology to constant environmental fluctuations. A major response to environmental perturbation is to change gene expression. Caulobacter and other alphaproteobacteria initiate a complex gene expression program known as the general stress response (GSR) under conditions including oxidative stress, osmotic stress, and nutrient limitation. The GSR enables cell survival in these environments. Understanding how bacteria survive stress requires that we dissect gene expression responses, such as the GSR, at the molecular level. This study is significant, as it defines transcriptional and posttranscriptional layers of gene expression regulation in response to hyperosmotic stress. We further provide evidence that a coherent feedforward motif influences the system properties of the Caulobacter GSR pathway.


Assuntos
Proteínas de Bactérias/genética , Caulobacter crescentus/genética , Regulação Bacteriana da Expressão Gênica , Pressão Osmótica , Fator sigma/genética , Estresse Fisiológico , Caulobacter crescentus/fisiologia , Proteômica , Processamento Pós-Transcricional do RNA
4.
Proc Natl Acad Sci U S A ; 111(11): 4097-102, 2014 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-24591642

RESUMO

The serine/threonine protein phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets by associating with nearly 200 regulatory proteins to form highly specific holoenzymes. However, how these proteins direct PP1 specificity and the ability to predict how these PP1 interacting proteins bind PP1 from sequence alone is still missing. PP1 nuclear targeting subunit (PNUTS) is a PP1 targeting protein that, with PP1, plays a central role in the nucleus, where it regulates chromatin decondensation, RNA processing, and the phosphorylation state of fundamental cell cycle proteins, including the retinoblastoma protein (Rb), p53, and MDM2. The molecular function of PNUTS in these processes is completely unknown. Here, we show that PNUTS, which is intrinsically disordered in its free form, interacts strongly with PP1 in a highly extended manner. Unexpectedly, PNUTS blocks one of PP1's substrate binding grooves while leaving the active site accessible. This interaction site, which we have named the arginine site, allowed us to define unique PP1 binding motifs, which advances our ability to predict how more than a quarter of the known PP1 regulators bind PP1. Additionally, the structure shows how PNUTS inhibits the PP1-mediated dephosphorylation of critical substrates, especially Rb, by blocking their binding sites on PP1, insights that are providing strategies for selectively enhancing Rb activity.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica/genética , Modelos Moleculares , Proteínas Nucleares/metabolismo , Conformação Proteica , Proteína Fosfatase 1/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína do Retinoblastoma/metabolismo , Sequência de Aminoácidos , Calorimetria , Montagem e Desmontagem da Cromatina/fisiologia , Clonagem Molecular , Biologia Computacional , Cristalização , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Domínios e Motivos de Interação entre Proteínas/genética , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Alinhamento de Sequência , Especificidade por Substrato
5.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184258

RESUMO

Two-component signaling systems (TCSs) function to detect environmental cues and transduce this information into a change in transcription. In its simplest form, TCS-dependent regulation of transcription entails phosphoryl-transfer from a sensory histidine kinase to its cognate DNA-binding receiver protein. However, in certain cases, auxiliary proteins may modulate TCSs in response to secondary environmental cues. Caulobacter crescentus FixT is one such auxiliary regulator. FixT is composed of a single receiver domain and functions as a feedback inhibitor of the FixL-FixJ (FixLJ) TCS, which regulates the transcription of genes involved in adaptation to microaerobiosis. We sought to define the impact of fixT on Caulobacter cell physiology and to understand the molecular mechanism by which FixT represses FixLJ signaling. fixT deletion results in excess production of porphyrins and premature entry into stationary phase, demonstrating the importance of feedback inhibition of the FixLJ signaling system. Although FixT is a receiver domain, it does not affect dephosphorylation of the oxygen sensor kinase FixL or phosphoryl-transfer from FixL to its cognate receiver FixJ. Rather, FixT represses FixLJ signaling by inhibiting the FixL autophosphorylation reaction. We have further identified a 4-cysteine motif in Caulobacter FixT that binds an Fe-S cluster and protects the protein from degradation by the Lon protease. Our data support a model in which the oxidation of this Fe-S cluster promotes the degradation of FixT in vivo This proteolytic mechanism facilitates clearance of the FixT feedback inhibitor from the cell under normoxia and resets the FixLJ system for a future microaerobic signaling event.IMPORTANCE Two-component signal transduction systems (TCSs) are broadly conserved in the bacterial kingdom and generally contain two molecular components, a sensor histidine kinase and a receiver protein. Sensor histidine kinases alter their phosphorylation state in direct response to a physical or chemical cue, whereas receiver proteins "receive" the phosphoryl group from the kinase to regulate a change in cell physiology. We have discovered that a single-domain receiver protein, FixT, binds an Fe-S cluster and controls Caulobacter heme homeostasis though its function as a negative-feedback regulator of the oxygen sensor kinase FixL. We provide evidence that the Fe-S cluster protects FixT from Lon-dependent proteolysis in the cell and endows FixT with the ability to function as a second, autonomous oxygen/redox sensor in the FixL-FixJ signaling pathway. This study introduces a novel mechanism of regulated TCS feedback control by an Fe-S-binding receiver domain.


Assuntos
Proteínas de Bactérias/metabolismo , Caulobacter crescentus/fisiologia , Ferro/metabolismo , Transdução de Sinais , Enxofre/metabolismo , Caulobacter crescentus/genética , Regulação Bacteriana da Expressão Gênica , Heme/metabolismo , Histidina Quinase/metabolismo , Homeostase , Cinética , Fosforilação
6.
Structure ; 24(2): 232-42, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26805523

RESUMO

The N-end rule dictates that a protein's N-terminal residue determines its half-life. In bacteria, the ClpS adaptor mediates N-end-rule degradation, by recognizing proteins bearing specific N-terminal residues and delivering them to the ClpAP AAA+ protease. Unlike most bacterial clades, many α-proteobacteria encode two ClpS paralogs, ClpS1 and ClpS2. Here, we demonstrate that both ClpS1 and ClpS2 from A. tumefaciens deliver N-end-rule substrates to ClpA, but ClpS2 has more stringent binding specificity, recognizing only a subset of the canonical bacterial N-end-rule residues. The basis of this enhanced specificity is addressed by crystal structures of ClpS2, with and without ligand, and structure-guided mutagenesis, revealing protein conformational changes and remodeling in the substrate-binding pocket. We find that ClpS1 and ClpS2 are differentially expressed during growth in A. tumefaciens and conclude that the use of multiple ClpS paralogs allows fine-tuning of N-end-rule degradation at the level of substrate recognition.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/metabolismo , Aminoácidos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Cristalografia por Raios X , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Peptídeo Hidrolases/metabolismo , Conformação Proteica , Desdobramento de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa