Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370678

RESUMO

Background: Intra-tumoural heterogeneity complicates cancer prognosis and impairs treatment success. One of the ways subclonal reconstruction (SRC) quantifies intra-tumoural heterogeneity is by estimating the number of subclones present in bulk DNA sequencing data. SRC algorithms are probabilistic and need to be initialized by a random seed. However, the seeds used in bioinformatics algorithms are rarely reported in the literature. Thus, the impact of the initializing seed on SRC solutions has not been studied. To address this gap, we generated a set of ten random seeds to systematically benchmark the seed sensitivity of three probabilistic SRC algorithms: PyClone-VI, DPClust, and PhyloWGS. Results: We characterized the seed sensitivity of three algorithms across fourteen whole-genome sequences of head and neck squamous cell carcinoma and nine SRC pipelines, each composed of a single nucleotide variant caller, a copy number aberration caller and an SRC algorithm. This led to a total of 1470 subclonal reconstructions, including 1260 single-region and 210 multi-region reconstructions. The number of subclones estimated per patient vary across SRC pipelines, but all three SRC algorithms show substantial seed sensitivity: subclone estimates vary across different seeds for the same set of input using the same SRC algorithm. No seed consistently estimated the mode number of subclones across all patients for any SRC algorithm. Conclusions: These findings highlight the variability in quantifying intra-tumoural heterogeneity introduced by the seed sensitivity of probabilistic SRC algorithms. We recommend that authors, reviewers and editors adopt guidelines to both report and randomize seed choices. It may also be valuable to consider seed-sensitivity in the benchmarking of newly developed SRC algorithms. These findings may be of interest in other areas of bioinformatics where seeded probabilistic algorithms are used and suggest consideration of formal seed reporting standards to enhance reproducibility.

2.
Nat Commun ; 13(1): 5803, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192477

RESUMO

Age is the primary risk factor for many common human diseases. Here, we quantify the relative contributions of genetics and aging to gene expression patterns across 27 tissues from 948 humans. We show that the predictive power of expression quantitative trait loci is impacted by age in many tissues. Jointly modelling the contributions of age and genetics to transcript level variation we find expression heritability (h2) is consistent among tissues while the contribution of aging varies by >20-fold with [Formula: see text] in 5 tissues. We find that while the force of purifying selection is stronger on genes expressed early versus late in life (Medawar's hypothesis), several highly proliferative tissues exhibit the opposite pattern. These non-Medawarian tissues exhibit high rates of cancer and age-of-expression-associated somatic mutations. In contrast, genes under genetic control are under relaxed constraint. Together, we demonstrate the distinct roles of aging and genetics on expression phenotypes.


Assuntos
Envelhecimento , Locos de Características Quantitativas , Envelhecimento/genética , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Fenótipo , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa