Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36768234

RESUMO

NMDA-receptor hypofunction is increasingly considered to be an important pathomechanism in schizophrenia. However, to date, it has not been possible to identify patients with relevant NMDA-receptor hypofunction who would respond to glutamatergic treatments. Preclinical models, such as the ketamine model, could help identify biomarkers related to NMDA-receptor function that respond to glutamatergic modulation, for example, via activation of the glycine-binding site. We, therefore, aimed to investigate the effects of opposing modulation of the NMDA receptor on gamma activity (30-100 Hz) at rest, the genesis of which appears to be highly dependent on NMDA receptors. The effects of subanesthetic doses of S-ketamine and pretreatment with glycine on gamma activity at rest were examined in twenty-five healthy male participants using 64-channel electroencephalography. Psychometric scores were assessed using the PANSS and the 5D-ASC. While S-ketamine significantly increased psychometric scores and gamma activity at the scalp and in the source space, pretreatment with glycine did not significantly attenuate any of these effects when controlled for multiple comparisons. Our results question whether increased gamma activity at rest constitutes a suitable biomarker for the target engagement of glutamatergic drugs in the preclinical ketamine model. They might further point to a differential role of NMDA receptors in gamma activity generation.


Assuntos
Ketamina , Esquizofrenia , Humanos , Masculino , Ketamina/farmacologia , Receptores de N-Metil-D-Aspartato/fisiologia , Esquizofrenia/tratamento farmacológico , Ácido Glutâmico , N-Metilaspartato , Eletroencefalografia , Biomarcadores
2.
Neuroimage ; 251: 119004, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35176492

RESUMO

Although a substantial number of studies suggests some clinical benefit concerning negative symptoms in schizophrenia through the modulation of NMDA-receptor function, none of these approaches achieved clinical approval. Given the large body of evidence concerning glutamatergic dysfunction in a subgroup of patients, biomarkers to identify those with a relevant clinical benefit through glutamatergic modulation are urgently needed. A similar reduction of the early auditory evoked gamma-band response (aeGBR) as found in schizophrenia patients can be observed in healthy subjects following the application of an NMDA-receptor antagonist in the ketamine-model, which addresses the excitation / inhibition (E/I) imbalance of the disease. Moreover, this oscillatory change can be related to the emergence of negative symptoms. Accordingly, this study investigated whether glycine-related increases of the aeGBR, through NMDA-receptor co-agonism, accompany an improvement concerning negative symptoms in the ketamine-model. The impact of subanesthetic ketamine doses and the pretreatment with glycine was examined in twenty-four healthy male participants while performing a cognitively demanding aeGBR paradigm with 64-channel electroencephalography. Negative Symptoms were assessed through the PANSS. S-Ketamine alone caused a reduction of the aeGBR amplitude associated with more pronounced negative symptoms compared to placebo. Pretreatment with glycine attenuated both, the ketamine-induced alterations of the aeGBR amplitude and the increased PANSS negative scores in glycine-responders, classified based on relative aeGBR increase. Thus, we propose that the aeGBR represents a possible biomarker for negative symptoms in schizophrenia related to insufficient glutamatergic neurotransmission. This would allow to identify patients with negative symptoms, who might benefit from glutamatergic treatment.


Assuntos
Glicina , Ketamina , Esquizofrenia , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Glicina/farmacologia , Humanos , Ketamina/efeitos adversos , Ketamina/farmacologia , Masculino , Receptores de N-Metil-D-Aspartato , Esquizofrenia/tratamento farmacológico
3.
Neuroimage ; 239: 118307, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34174389

RESUMO

Neural oscillations are fundamental mechanisms of the human brain that enable coordinated activity of different brain regions during perceptual and cognitive processes. A frontotemporal network generated by means of gamma oscillations and comprising the auditory cortex (AC) and the anterior cingulate cortex (ACC) has been shown to be involved in the cognitively demanding auditory information processing. This study aims to reveal patterns of functional and effective connectivity within this network in healthy subjects by means of simultaneously recorded electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). We simultaneously recorded EEG and fMRI in 28 healthy subjects during the performance of a cognitively demanding auditory choice reaction task. Connectivity between the ACC and AC was analysed employing EEG and fMRI connectivity measures. We found a significant BOLD signal correlation between the ACC and AC, a significant task-dependant increase of fMRI connectivity (gPPI) and a significant increase in functional coupling in the gamma frequency range between these regions (LPS), which was increased in top-down direction (granger analysis). EEG and fMRI connectivity measures were positively correlated. The results of these study point to a role of a top-down influence of the ACC on the AC executed by means of gamma synchronisation. The replication of fMRI connectivity patterns in simultaneously recorded EEG data and the correlation between connectivity measures from both domains found in our study show, that brain connectivity based on the synchronisation of gamma oscillations is mirrored in fMRI connectivity patterns.


Assuntos
Córtex Auditivo/diagnóstico por imagem , Percepção Auditiva/fisiologia , Conectoma , Sincronização de Fases em Eletroencefalografia , Lobo Frontal/diagnóstico por imagem , Raios gama , Giro do Cíngulo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Adulto , Córtex Auditivo/fisiologia , Eletroencefalografia , Sincronização de Fases em Eletroencefalografia/fisiologia , Feminino , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/fisiologia , Tálamo/fisiologia , Adulto Jovem
4.
Neuroimage ; 173: 49-56, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471098

RESUMO

Reports linking a 'jumping-to-conclusions' bias to delusions have led to growing interest in the neurobiological correlates of probabilistic reasoning. Several brain areas have been implicated in probabilistic reasoning; however, findings are difficult to integrate into a coherent account. The present study aimed to provide additional evidence by investigating, for the first time, effective connectivity among brain areas involved in different stages of evidence gathering. We investigated evidence gathering in 25 healthy individuals using fMRI and a new paradigm (Box Task) designed such as to minimize the effects of cognitive effort and reward processing. Decisions to collect more evidence ('draws') were contrasted to decisions to reach a final choice ('conclusions') with respect to BOLD activity. Psychophysiological interaction analysis was used to investigate effective connectivity. Conclusion events were associated with extensive brain activations in widely distributed brain areas associated with the task-positive network. In contrast, draw events were characterized by higher activation in areas assumed to be part of the task-negative network. Effective connectivity between the two networks decreased during draws and increased during conclusion events. Our findings indicate that probabilistic reasoning may depend on the balance between the task-positive and task-negative network, and that shifts in connectivity between the two may be crucial for evidence gathering. Thus, abnormal connectivity between the two systems may significantly contribute to the jumping-to-conclusions bias.


Assuntos
Encéfalo/fisiologia , Rede Nervosa/fisiologia , Pensamento/fisiologia , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Brain Topogr ; 31(2): 218-226, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28803269

RESUMO

Interhemispheric auditory connectivity via the corpus callosum has been demonstrated to be important for normal speech processing. According to the callosal relay model, directed information flow from the right to the left auditory cortex has been suggested, but this has not yet been proven. For this purpose, 33 healthy participants were investigated with 64-channel EEG while performing the dichotic listening task in which two different consonant-vowel syllables were presented simultaneously to the left (LE) and right ear (RE). eLORETA source estimation was used to investigate the functional (lagged phase synchronization/LPS) and effective (isolated effective coherence/ICoh) connectivity between right and left primary (PAC) and secondary auditory cortices (SAC) in the gamma-band (30-100 Hz) during right and left ear reports. The major finding was a significantly increased effective connectivity in the gamma-band from the right to the left SAC during conscious perception of LE stimuli. In addition, effective and functional connectivity was significantly enhanced during LE as compared to RE reports. These findings give novel insight into transcallosal information transfer during auditory perception by showing that LE performance requires causal interhemispheric inputs from the right to the left auditory cortices, and that this interaction is mediated by synchronized gamma-band oscillations.


Assuntos
Córtex Auditivo/fisiologia , Vias Auditivas/fisiologia , Percepção Auditiva/fisiologia , Corpo Caloso/fisiologia , Lateralidade Funcional/fisiologia , Adulto , Testes com Listas de Dissílabos , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Psychiatry Neurosci ; 42(4): 273-283, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28556775

RESUMO

BACKGROUND: Targeting the N-methyl-D-aspartate receptor (NMDAR) is a major translational approach for treating negative symptoms of schizophrenia. Ketamine comprehensively produces schizophrenia-like symptoms, such as positive, cognitive and negative symptoms in healthy volunteers. The amplitude of the mismatch negativity (MMN) is known to be significantly reduced not only in patients with schizophrenia, but also in healthy controls receiving ketamine. Accordingly, it was the aim of the present study to investigate whether changes of MMN amplitudes during ketamine administration are associated with the emergence of schizophrenia-like negative symptoms in healthy volunteers. METHODS: We examined the impact of ketamine during an MMN paradigm with 64-channel electroencephalography (EEG) and assessed the psychopathological status using the Positive and Negative Syndrome Scale (PANSS) in healthy male volunteers using a single-blind, randomized, placebo-controlled crossover design. Low-resolution brain electromagnetic tomography was used for source localization. RESULTS: Twenty-four men were included in our analysis. Significant reductions of MMN amplitudes and an increase in all PANSS scores were identified under the ketamine condition. Smaller MMN amplitudes were specifically associated with more pronounced negative symptoms. Source analysis of MMN generators indicated a significantly reduced current source density (CSD) under the ketamine condition in the primary auditory cortex, the posterior cingulate and the middle frontal gyrus. LIMITATIONS: The sample included only men within a tight age range of 20-32 years. CONCLUSION: The MMN might represent a biomarker for negative symptoms in schizophrenia related to an insufficient NMDAR system and could be used to identify patients with schizophrenia with negative symptoms due to NMDAR dysfunction.


Assuntos
Encéfalo/fisiologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/metabolismo , Voluntários Saudáveis/psicologia , Ketamina/farmacologia , Esquizofrenia/induzido quimicamente , Adulto , Encéfalo/efeitos dos fármacos , Humanos , Masculino , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/diagnóstico , Método Simples-Cego , Adulto Jovem
7.
Brain Topogr ; 30(1): 30-45, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27659288

RESUMO

Growing evidence from neuroimaging studies suggest that emotional and cognitive processes are interrelated. Anatomical key structures in this context are the dorsal and rostral-ventral anterior cingulate cortex (dACC and rvACC). However, up to now, the time course of activations within these regions during emotion-cognition interactions has not been disentangled. In the present study, we used event-related potentials (ERP) and standardized low-resolution electromagnetic tomography (sLORETA) region of interest (ROI) source localization analyses to explore the time course of neural activations within the dACC and rvACC using a modified emotional Stroop paradigm. ERP components related to Stroop conflict (N200, N450 and late negativity) were analyzed. The time course of brain activations in the dACC and rvACC was strikingly different with more pronounced initial responses in the rvACC followed by increased dACC activity mainly at the late negativity window. Moreover, emotional valence modulated the earlier N450 stage within the rvACC region with higher neural activations in the positive compared to the negative and neutral conditions. Emotional arousal modulated the late negativity stage; firstly in the significant arousal × congruence ERP effect and then the significant higher current density in the low arousal condition within the dACC. Using sLORETA source localization, substantial differences in the activation time courses in the dACC and rvACC could be found during the emotional Stroop task. We suggest that during late negativity, within the dACC, emotional arousal modulated the processing of response conflict, reflected in the correlation between the ex-Gaussian µ and the current density in the dACC.


Assuntos
Atenção/fisiologia , Emoções/fisiologia , Potenciais Evocados/fisiologia , Giro do Cíngulo/fisiologia , Teste de Stroop , Adulto , Nível de Alerta/fisiologia , Cognição/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Adulto Jovem
8.
Brain Topogr ; 28(6): 865-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25926268

RESUMO

High frequency oscillations in the gamma range are known to be involved in early stages of auditory information processing in terms of synchronization of brain regions, e.g., in cognitive functions. It has been shown using EEG source localisation, as well as simultaneously recorded EEG-fMRI, that the auditory evoked gamma-band response (aeGBR) is modulated by attention. In addition to auditory cortex activity a dorsal anterior cingulate cortex (dACC) generator could be involved. In the present study we investigated aeGBR magnetic fields using magnetoencephalography (MEG). We aimed to localize the aeGBR sources and its connectivity features in relation to mental effort. We investigated the aeGBR magnetic fields in 13 healthy participants using a 275-channel CTF-MEG system. The experimental paradigms were two auditory choice reaction tasks with different difficulties and demands for mental effort. We performed source localization with eLORETA and calculated the aeGBR lagged phase synchronization between bilateral auditory cortices and frontal midline structures. The eLORETA analysis revealed sources of the aeGBR within bilateral auditory cortices and in frontal midline structures of the brain including the dACC. Compared to the control condition the dACC source activity was found to be significantly stronger during the performance of the cognitively demanding task. Moreover, this task involved a significantly stronger functional connectivity between auditory cortices and dACC. In accordance with previous EEG and EEG-fMRI investigations, our study confirms an aeGBR generator in the dACC by means of MEG and suggests its involvement in the effortful processing of auditory stimuli.


Assuntos
Córtex Auditivo/fisiologia , Mapeamento Encefálico , Ritmo Gama/fisiologia , Estimulação Acústica , Adolescente , Adulto , Vias Auditivas/fisiologia , Eletroencefalografia , Processamento Eletrônico de Dados , Feminino , Humanos , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Modelos Neurológicos , Adulto Jovem
9.
Neuroimage ; 100: 435-43, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24945670

RESUMO

While the role of synchronized oscillatory activity in the gamma-band frequency range for conscious perception is well established in the visual domain, there is limited evidence concerning neurophysiological mechanisms in conscious auditory perception. In the current study, we addressed this issue with 64-channel EEG and a dichotic listening (DL) task in twenty-five healthy participants. The typical finding of DL is a more frequent conscious perception of the speech syllable presented to the right ear (RE), which is attributed to the supremacy of the contralateral pathways running from the RE to the speech-dominant left hemisphere. In contrast, the left ear (LE) input initially accesses the right hemisphere and needs additional transfer via interhemispheric pathways before it is processed in the left hemisphere. Using lagged phase synchronization (LPS) analysis and eLORETA source estimation we examined the functional connectivity between right and left primary and secondary auditory cortices in the main frequency bands (delta, theta, alpha, beta, gamma) during RE/LE-reports. Interhemispheric LPS between right and left primary and secondary auditory cortices was specifically increased in the gamma-band range, when participants consciously perceived the syllable presented to the LE. Our results suggest that synchronous gamma oscillations are involved in interhemispheric transfer of auditory information.


Assuntos
Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Estado de Consciência/fisiologia , Lateralidade Funcional/fisiologia , Ritmo Gama/fisiologia , Adulto , Vias Auditivas/fisiologia , Testes com Listas de Dissílabos , Eletroencefalografia , Feminino , Humanos , Masculino , Fatores de Tempo
10.
J Psychiatr Res ; 173: 245-253, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554620

RESUMO

BACKGROUND: Cognitive reappraisal is an essential emotion regulation skill for social life and psychological health. However, individuals with major depressive disorder (MDD) cannot use this skill effectively. Successful cognitive reappraisal in healthy controls (HC) has been shown to be associated with theta activity in a frontal and subcortical network. In the present study, we investigated whether MDD patients are characterized by altered theta power and connectivity pattern during cognitive reappraisal compared to HC. METHODS: Using EEG and eLORETA, we examined both theta activity and connectivity when 25 controls and 24 patients with MDD were asked to complete the emotion cognitive reappraisal task of viewing neutral and negative pictures and reappraise negative pictures. Habitual use of emotion regulation skills was collected using the Cognitive Emotion Regulation Questionnaire (CERQ). RESULTS: The results showed that MDD patients had (1) reduced theta activity in the left dorsolateral (dlPFC), dorsomedial prefrontal (dmPFC), and rostral-ventral cingulate cortices (rvACC), as well as (2) reduced dlPFC-rvACC theta connectivity than HC during reappraisal. In addition, left dlPFC-rvACC theta connectivity was positively correlated with self-reported cognitive reappraisal in HC. This relation was not observed in MDD. In contrast, CERQ revealed significantly greater use of inadequate regulations skills and significantly lower use of adaptive skills in MDD. LIMITATION: Sample size, limited solution space to cortical grey matter excluding regions such as the amygdala. CONCLUSION: This study may indicate a putative frontocingulate dysfunction leading either to an increased use of inadequate emotion regulation or a decreased use of skills that serve to boost positive emotion.


Assuntos
Transtorno Depressivo Maior , Regulação Emocional , Humanos , Córtex Pré-Frontal , Imageamento por Ressonância Magnética/métodos , Emoções/fisiologia , Mapeamento Encefálico
11.
BJPsych Open ; 10(2): e58, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433600

RESUMO

BACKGROUND: Borderline personality disorder (BPD) is a severe psychiatric disorder conceptualised as a disorder of emotion regulation. Emotion regulation has been linked to a frontolimbic network comprising the dorsolateral prefrontal cortex and the amygdala, which apparently synchronises its activity via oscillatory coupling in the theta frequency range. AIMS: To analyse whether there are distinct differences in theta oscillatory coupling in frontal brain regions between individuals with BPD and matched controls during emotion regulation by cognitive reappraisal. METHOD: Electroencephalogram (EEG) recordings were performed in 25 women diagnosed with BPD and 25 matched controls during a cognitive reappraisal task in which participants were instructed to downregulate negative emotions evoked by aversive visual stimuli. Between- and within-group time-frequency analyses were conducted to analyse regulation-associated theta activity (3.5-8.5 Hz). RESULTS: Oscillatory theta activity differed between the participants with BPD and matched controls during cognitive reappraisal. Regulation-associated theta increases were lower in frontal regions in the BPD cohort compared with matched controls. Functional connectivity analysis for regulation-associated changes in the theta frequency band revealed a lower multivariate interaction measure (MIM) increase in frontal brain regions in persons with BPD compared with matched controls. CONCLUSIONS: Our findings support the notion of alterations in a frontal theta network in BPD, which may be underlying core symptoms of the disorder such as deficits in emotion regulation. The results add to the growing body of evidence for altered oscillatory brain dynamics in psychiatric populations, which might be investigated as individualised treatment targets using non-invasive stimulation methods.

13.
Front Psychiatry ; 14: 1140361, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37457770

RESUMO

Introduction: One of the most important cognitive functions in our everyday life is the working memory (WM). In several neuropsychiatric diseases such as ADHD or schizophrenia WM deficits can be observed, making it an attractive target for non-invasive brain stimulation methods like transcranial electrical stimulation (tES). However, the literature shows rather heterogeneous results of tES effects on WM performance. fMRI meta-analyses have identified a WM network including frontoparietal brain areas such as the dorsolateral prefrontal cortex (DLPFC) and the posterior parietal cortex (PPC). Neurophysiological studies revealed oscillatory activity in the theta band frequency range to be of crucial functional relevance for WM processes. Based on this, transcranial alternating current stimulation (tACS) in the theta frequency range targeting DLPFC and PPC in a spatially optimized way might further improve effects of tES on WM performance. Methods: Sixteen healthy subjects were stimulated with varying stimulation settings on four different days in a counterbalanced within-subject design. These setups included the application of (1) tACS with a frequency of 5 Hz (theta frequency range) over the left DLPFC and (2) the right superior parietal cortex, (3) transcranial direct current stimulation (tDCS) of the DLPFC and (4) a sham stimulation condition during the online performance of a visual delayed-match-to-sample task with varying working memory load. We introduce a procedure to calculate an optimal tES model revealing optimized high-density setups for the present study for 3 cathodes and 1 anode and stimulation currents of 1.5 mA. Results: A significant interaction effect of stimulation type and load condition on working memory capacity was found. This was reflected by a significant improvement of WM performance in the high load condition during tACS over the left DLPFC compared with sham stimulation, which was not the case for our parietal tACS or tDCS setup. Discussion: Working memory performance can be improved with optimized high-definition tACS with a frequency of 5 Hz over the left DLPFC. The conception of different mechanisms underlying transcranial electrical stimulation with alternating and direct currents is supported by these results. Patients suffering from working memory impairments due to neuropsychiatric diseases might potentially benefit from this brain stimulation approach.

14.
World J Biol Psychiatry ; 24(5): 387-399, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36083108

RESUMO

OBJECTIVES: Disrupted auditory networks play an important role in the pathophysiology of psychosis, with abnormalities already observed in individuals at clinical high-risk for psychosis (CHR). Here, we examine structural and functional connectivity of an auditory network in CHR utilising state-of-the-art electroencephalography and diffusion imaging techniques. METHODS: Twenty-six CHR subjects and 13 healthy controls (HC) underwent diffusion MRI and electroencephalography while performing an auditory task. We investigated structural connectivity, measured as fractional anisotropy in the Arcuate Fasciculus (AF), Cingulum Bundle, and Superior Longitudinal Fasciculus-II. Gamma-band lagged-phase synchronisation, a functional connectivity measure, was calculated between cortical regions connected by these tracts. RESULTS: CHR subjects showed significantly higher structural connectivity in the right AF than HC (p < .001). Although non-significant, functional connectivity between cortical areas connected by the AF was lower in CHR than HC (p = .078). Structural and functional connectivity were correlated in HC (p = .056) but not in CHR (p = .29). CONCLUSIONS: We observe significant differences in structural connectivity of the AF, without a concomitant significant change in functional connectivity in CHR subjects. This may suggest that the CHR state is characterised by a decoupling of structural and functional connectivity, possibly due to abnormal white matter maturation.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Substância Branca , Humanos , Transtornos Psicóticos/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Eletroencefalografia , Imageamento por Ressonância Magnética
15.
Behav Sci (Basel) ; 12(6)2022 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-35735388

RESUMO

According to the monoamine hypothesis, the development of depression is associated with dysfunctions of the serotonergic system. Alterations in the serotonin transporter gene (5-HTTLPR), the serotonergic activity in the brain, and the content of serotonin (5-HT) have been related to depression and were examined separately by previous studies. This study investigates these parameters in 89 depressed patients and 89 healthy participants. We investigated the serotonergic activity measured by the loudness dependence of auditory evoked potentials (LDAEP). In addition to the examination of the serotonin content (serum and platelet), enzyme-linked immunosorbent assays (ELISA) were used and 5-HTTLPR genotypes were analyzed. We observed a lower serotonin content in patients compared to healthy participants. Further, we noticed a correlation between anxiety and depression-associated symptoms with serotonergic activity. Patients treated with SSRI/SNRI showed decreased contents of serum serotonin compared to patients without any psychotropic medication or other psychotropic medications. Since the serotonergic activity, peripheral serotonin content, and 5-HTTLPR were unrelated, the results suggest independent alterations of central and peripheral serotonergic systems in depression. In line with this finding, serotonergic activity was related to anxiety and depression symptoms. Furthermore, the applied medication seems to influence serum serotonin content in patients with depression.

16.
Sci Rep ; 11(1): 17336, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462449

RESUMO

Previous studies using imaging techniques such as electroencephalography (EEG) or functional magnetic resonance imaging (fMRI) have identified neurophysiological markers of impaired feedback processing in patients with Borderline Personality Disorder (BPD). These mainly include reduced oscillatory activity in the theta frequency range in the EEG and altered activations in frontal and striatal regions in fMRI studies. The aim of the present study is to integrate these results using a coupling of simultaneously recorded EEG and fMRI. Simultaneous EEG (64-channel) and fMRI (3-Tesla Siemens Prisma) was recorded whilst participants (19 BPD patients and 18 controls) performed a gambling task. Data was analysed for the two imaging techniques separately as well as in a single-trial coupling of both modalities. Evoked theta oscillatory power as a response to loss feedback was reduced in BPD patients. EEG-fMRI coupling revealed an interaction between feedback valence and group in prefrontal regions centering in the dorsolateral prefrontal cortex (dlPFC), with healthy controls showing stronger modulation by theta responses during loss when compared to gain feedback and the opposite effect in BPD patients. Our results show multiple alterations in the processing of feedback in BPD, which were partly linked to impulsivity. The dlPFC was identified as the seed of theta-associated activation differences.


Assuntos
Transtorno da Personalidade Borderline/diagnóstico por imagem , Transtorno da Personalidade Borderline/fisiopatologia , Eletroencefalografia/métodos , Retroalimentação , Jogo de Azar/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Recompensa , Ritmo Teta , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Mapeamento Encefálico , Estudos de Casos e Controles , Feminino , Jogo de Azar/fisiopatologia , Humanos , Comportamento Impulsivo/fisiologia , Masculino , Oscilometria , Córtex Pré-Frontal/diagnóstico por imagem , Probabilidade , Processamento de Sinais Assistido por Computador
17.
Front Psychiatry ; 12: 671007, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177660

RESUMO

Disturbed functional connectivity is assumed to cause neurocognitive deficits in patients suffering from schizophrenia. A Glutamate N-methyl-D-aspartate receptor (NMDAR) dysfunction has been suggested as a possible mechanism underlying altered connectivity in schizophrenia, especially in the gamma- and theta-frequency range. The present study aimed to investigate the effects of the NMDAR-antagonist ketamine on resting-state power, functional connectivity, and schizophrenia-like psychopathological changes in healthy volunteers. In a placebo-controlled crossover design, 25 healthy subjects were recorded using resting-state 64-channel-electroencephalography (EEG) (eyes closed). The imaginary coherence-based Multivariate Interaction Measure (MIM) was used to measure gamma and theta connectivity across 80 cortical regions. The network-based statistic was applied to identify involved networks under ketamine. Psychopathology was assessed with the Positive and Negative Syndrome Scale (PANSS) and the 5-Dimensional Altered States of Consciousness Rating Scale (5D-ASC). Ketamine caused an increase in all PANSS (p < 0.001) as well as 5D-ASC scores (p < 0.01). Significant increases in resting-state gamma and theta power were observed under ketamine compared to placebo (p < 0.05). The source-space analysis revealed two distinct networks with an increased mean functional gamma- or theta-band connectivity during the ketamine session. The gamma-network consisted of midline regions, the cuneus, the precuneus, and the bilateral posterior cingulate cortices, while the theta-band network involved the Heschl gyrus, midline regions, the insula, and the middle cingulate cortex. The current source density (CSD) within the gamma-band correlated negatively with the PANSS negative symptom score, and the activity within the gamma-band network correlated negatively with the subjective changed meaning of percepts subscale of the 5D-ASC. These results are in line with resting-state patterns seen in people who have schizophrenia and argue for a crucial role of the glutamate system in mediating dysfunctional gamma- and theta-band-connectivity in schizophrenia. Resting-state networks could serve as biomarkers for the response to glutamatergic drugs or drug development efforts within the glutamate system.

18.
Front Psychiatry ; 12: 686967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34194350

RESUMO

Objective: Sexual dimorphism has been investigated in schizophrenia, although sex-specific differences among individuals who are at clinical high-risk (CHR) for developing psychosis have been inconclusive. This study aims to characterize sexual dimorphism of language areas in the brain by investigating the asymmetry of four white matter tracts relevant to verbal working memory in CHR patients compared to healthy controls (HC). HC typically show a leftward asymmetry of these tracts. Moreover, structural abnormalities in asymmetry and verbal working memory dysfunctions have been associated with neurodevelopmental abnormalities and are considered core features of schizophrenia. Methods: Twenty-nine subjects with CHR (17 female/12 male) for developing psychosis and twenty-one HC (11 female/10 male) matched for age, sex, and education were included in the study. Two-tensor unscented Kalman filter tractography, followed by an automated, atlas-guided fiber clustering approach, were used to identify four fiber tracts related to verbal working memory: the superior longitudinal fasciculi (SLF) I, II and III, and the superior occipitofrontal fasciculus (SOFF). Using fractional anisotropy (FA) of tissue as the primary measure, we calculated the laterality index for each tract. Results: There was a significantly greater right>left asymmetry of the SLF-III in CHR females compared to HC females, but no hemispheric difference between CHR vs. HC males. Moreover, the laterality index of SLF-III for CHR females correlated negatively with Backward Digit Span performance, suggesting a greater rightward asymmetry was associated with poorer working memory functioning. Conclusion: This study suggests increased rightward asymmetry of the SLF-III in CHR females. This finding of sexual dimorphism in white matter asymmetry in a language-related area of the brain in CHR highlights the need for a deeper understanding of the role of sex in the high-risk state. Future work investigating early sex-specific pathophysiological mechanisms, may lead to the development of novel personalized treatment strategies aimed at preventing transition to a more chronic and difficult-to-treat disorder.

19.
J Psychiatr Res ; 129: 80-87, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32619750

RESUMO

OBJECTIVES: Reward system dysfunctions are considered to be a pathophysiological mechanism in schizophrenia. Electrophysiological studies of reward system functions have identified frequency-specific brain networks for the processing of positive (high-beta frequency) and negative (theta frequency) events. Remarkably, midbrain dopaminergic signalling also includes theta and high-beta frequency modes, which have been assumed to reflect tonic and phasic dopamine responses, respectively. The aim of the present study was to identify alterations of oscillatory responses to reward feedback in patients with schizophrenia. METHODS: Seventeen patients with schizophrenia and 18 healthy controls performed a gambling task during recording of 64-channel electroencephalography. The theta and high-beta band total power were investigated in response to feedback events depending on feedback valence (loss or gain) and magnitude (5 vs. 25 points). RESULTS: Both the increase of theta oscillatory activity in response to loss feedback (compared to gain feedback) and the increase of high-beta oscillatory activity in response to gain feedback (compared to loss feedback) were reduced in patients. The difference in high-beta responses to gain versus loss feedback in patients was associated with the severity of negative symptoms. CONCLUSIONS: Our findings are consistent with current models of reward system dysfunction in schizophrenia, and indicate deficits in both cortical tonic and subcortical phasic dopamine activity, consistent with the complex dopaminergic abnormalities in schizophrenia.


Assuntos
Jogo de Azar , Esquizofrenia , Mapeamento Encefálico , Eletroencefalografia , Humanos , Recompensa
20.
Schizophr Res ; 224: 141-150, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33268158

RESUMO

BACKGROUND: Abnormalities in fronto-striatal-thalamic (FST) sub-circuits are present in schizophrenia and are associated with cognitive impairments. However, it remains unknown whether abnormalities in FST sub-circuits are present before psychosis onset. This may be elucidated by investigating 22q11.2 deletion syndrome (22q11DS), a genetic syndrome associated with a 30% risk for developing schizophrenia in adulthood and a decline in Verbal IQ (VIQ) preceding psychosis onset. Here, we examined white matter (WM) tracts in FST sub-circuits, especially those in the dorsolateral (DLPFC) and ventrolateral prefrontal cortex (VLPFC) sub-circuits, and their associations with VIQ in young adults with 22q11DS. METHODS: Diffusion MRI scans were acquired from 21 individuals with 22q11DS with prodromal symptoms of schizophrenia, 30 individuals with 22q11DS without prodromal symptoms, and 30 healthy controls (mean age: 21 ± 2 years). WM tracts were reconstructed between striatum and thalamus with rostral middle frontal gyrus (rMFG) and inferior frontal gyrus (IFG), representing DLPFC and VLPFC respectively. Fractional anisotropy (FA) and radial diffusivity (RD) were used for group comparisons. VIQ was assessed and associations with the diffusion measures were evaluated. RESULTS: FA was significantly increased and RD decreased in most tracts of the DLPFC and VLPFC sub-circuits in 22q11DS. Verbal IQ scores correlated negatively with FA and, at trend level, positively with RD in the right thalamus-IFG tract in 22q11DS with prodromal symptoms. CONCLUSIONS: While abnormalities in FST sub-circuits are associated with schizophrenia, we observed that these abnormalities are also present in 22q11DS individuals with prodromal symptoms and are associated with verbal performance in the right thalamus-IFG tract.


Assuntos
Síndrome de DiGeorge , Substância Branca , Adulto , Anisotropia , Imagem de Tensor de Difusão , Humanos , Tálamo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa